# The Application of Mechanical Clamps to Portsmouth Connectors D. B. GLOWE AND S. L. ARNETT Tessas Research Instituté, Inc. 5902 W. Bee Caves Road Austin, Testas 18746 November 23, 1981 NOV 2 4 1981 SECURITY CLASSIFICATION OF THIS PAGE When Data Entered | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | |--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------| | NRL Memorandum Report 4602 AD-A107632 | · · | | THE APPLICATION OF MECHANICAL CLAMPS TO PORTSMOUTH CONNECTORS | Final report on completed contract. | | *D.E. Glowe and S.L. Arnett | 6 PERFORMING ORG REPORT NUMBER 6 CONTRACT OR GRANT NUMBER(*) Contract N00173-79-C-0129 | | Texas Research Institute, Inc. 5902 West Bee Caves Road Austin, Texas 78746 | 10 PROGRAM ELEMENT PROJECT TASK<br>AREA & WORK UNIT NUMBERS<br>64503N; S0219-AS; 0584-05 | | CONTROLLING OFFICE NAME AND ADDRESS Underwater Sound Reference Detachment Naval Research Laboratory P.O. Box 8337, Orlando, FL 32856 | November 23, 1981 November of pages 74 | | MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) | 15. SECURITY CLASS (of this report) UNCLASSIFIED 15. DECLASSIFICATION DOWNGRADING SCHEDULE | 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES \*Authors are employees of Texas Research Institute. This report is a final report on work performed under Contract N00173-79-C-0129 for G. Dickson Hugus III of the Underwater Sound Reference Detachment. 9. KEY WORDS (Continue on reverse elde if necessary and identify by block number) Connectors Underwater connectors Electrical connectors Submarine equipment Sonar equipment 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The efficiency of mechanical clamps applied to the molded boot of the MIL-C-24231 (Portsmouth) underwater connector was investigated. A mission profile for underwater connectors was prepared and used to design laboratory test sequences to evaluate connector leakage. A test connector was designed that incorporated the important features of the Portsmouth connector with the addition of leakage monitors in the construction so that leakage paths in the connector could be identified during test. Construction variables (Continues) DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Date Briefed) #### 20 ABSTRACT (Continued) of polyurethane or neoprene boot, both bonded and unbonded, clamp design and shielded or unshielded cable were investigated using factorial experimental design and analysis. A preferred clamped connector configuration was determined. Preferred test connectors were manufactured using bonded neoprene boots, shielded cable and Band-It Preform clamps and compared to a standard non-clamped polyurethane connector in accelerated life testing. It was determined that a mechanical clamp inhibits leakage in a connector. Although applying a clamp to a connector does not insure water-tight integrity, it was found that after 32 weeks of accelerated life testing, 78% fewer clamped connectors leaked than the control unclamped connectors. The data also indicated that neoprene and polyurethane bonds degrade with time but connectors made with neoprene molded boots were less likely to leak through a bond interface than those made with polyurethane molded boots. It was also found that the pressure qualification tests specified in MIL-C-24231 do not necessarily identify unbonded connectors, and that construction variables other than bond quality may greatly influence the leakage characteristics of connectors. # TABLE OF CONTENTS | LIST O | F TA | BL | ES | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | iv | |------------|----------------|-----------|-------|-----------|-------------|-------|------------|-----|------|-----|-----|-----|-----|-----|--------|----|----|-----|---|---|---|---|---|---|---|----| | LIST O | F FI | GUI | RES | 3 | | • | • | • | | | | | | • | | • | • | • | • | | • | • | • | • | • | vi | | BACKGR | OUNI | | • | | | | | • | | • | | • | | • | • | | | | • | • | | | • | • | | 1 | | APPROA | СН | | • | | | | | | • | | | | | | | • | • | | | • | • | • | • | • | | 1 | | DISCUS | SSIO | N O | FI | RES | SUL | TS | ; <i>I</i> | AN! | o. c | 201 | NC: | LUS | 510 | ONS | ; | | | | | | | | • | | | 8 | | Unbond | led ( | Con | nec | cto | rs | ; | | | | | | | | | | | | | | | | | | | • | 8 | | Servio | e Ii | nf1 | uei | nce | . 0 | n | C: | Lar | np | 5 | | | | | | ٠ | | | | | | • | | ٠ | • | | | Clamp | Des | ign | | | | | | | | | | | | | | | | | | | | | | | | 9 | | Bond | | -6 | | | | | | | | | | | | | | | | | | | | | | | • | ç | | Connne | ec to | r L | i fe | e F | ٦re | ed i | ct | i | on | | | | | | | | | | | | | | | | | 12 | | Clamp | Eff | ici | en | сv | | | | | | | | | | | | | | | | | | | | | | 12 | | Clamp | Eco | non | iic | s | | | | | | | • | | | • | | • | | • | • | | • | • | • | • | • | 15 | | DISCUS | ecto | NI C | י יזו | TAG | er c | : | | | | | | | | | | | | | | _ | | _ | | | _ | 17 | | Missia | - n | | 'E' . | | אנט | ' | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | ٠ | • | ٠ | • | • | 17 | | Clamps | ) II . F. | LOI | | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 22 | | Parall | ) •<br> _ ' | · · | ha. | •<br>•1. | • | . • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | · | Ī | Ī | • | • | 28 | | Test ( | . e . | re. | | יש | ogy<br>Take | ,<br> | ٠. | • | | ra' | | • | | • | • | • | • | • | • | • | • | • | • | • | · | 28 | | Connec | conn<br>ctor | ect<br>Tu | st | ne<br>ing | 2 S 1 | .gı | | | | ra. | | • | a L | | ı<br>• | | • | | | | | | | • | | 35 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TEST F | RESU | LTS | ; . | | • | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | 39 | | Factor | rial | Ma | ıtr | iκ | | | | | | • | | | | • | • | | • | | • | • | • | ٠ | • | • | • | 39 | | Clamp | Eff | ici | .en | сy | • | ٠ | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | ٠ | • | • | • | • | • | 43 | | AP PE N | DIX . | A: | Te | st | Da | a t a | a , | F | ac | to | ri | al | M | at: | ri | x | | | • | • | • | • | | • | • | 49 | | APPEN | DIX | В: | Te | st | Da | a t a | э, | A | сc | el | er | at | io | n i | Li | fe | T | 'es | t | | , | • | | • | | 53 | | A D DE NII | ntv | c. | Fc | + 1. | mai | ۰ ۵ | ^ | F | ٨٥ | ~ ~ | 10 | ro | + i | o n | F | 20 | to | re | | | | | | | | 67 | ### LIST OF TABLES | | | | Page | |--------|--------|----------------------------------------------------------------|------| | TABLE | 1 | Factorial Matrix | 7 | | TABLE | 2 | One Week ALT Exposure Summary | 14 | | TABLE | 3 | Mission Profile, Transportation and Storage | 18 | | TABLE | 4 | Mission Profile, Installation and Maintenance | 19 | | TABLE | 5 | Mission Profile, SSN Service | 20 | | TABLE | 6 | Mission Profile, SSBN Service | 21 | | TABLE | 7 | Mission Profile Surface Ship Service | 22 | | TABLE | 8 | Connector Stress Extremes | 24 | | TABLE | 9 | Screening Test Plan | 36 | | TABLE | 10 | Accelerated Life Test Plan | 38 | | TABLE | 11 | Factorial Results, Connectors Surviving | 40 | | TABLE | 12 | Factorial Results, Number of Cycle to Failure | 41 | | TABLE | 13 | Numerical Comparison, Factorial Results | 42 | | TABLE | 14A | Failure Analysis, Factorial Matrix | 44 | | TABLE | 14B | Failure Analysis, Factorial Matrix | 45 | | TABLE | 15A | ALT Connector Failure Analysis | 46 | | TABLE | 15B | ALT Connector Failure Analysis | 47 | | TABLE | 16 | ALT Failure Analysis Summary | 48 | | APPEND | IX A T | ABLE 1 - Factorial Matrix Resistance Data | 50 | | | T | ABLE 2 - Factorial Matrix Resistance Data | 51 | | APPEND | IX B T | ABLE 1 - ALT SUMMARY - NEOPRENE CONNECTORS Resistance Readings | 54 | | | Т | ABLE 2 - ALT SUMMARY - NEOPRENE CONNECTORS Resistance Readings | 55 | # LIST OF TABLES (cont'd.) | APPENDIX | В | TABLE | 3 | - | ALT SUMMARY - NEOPRENE CONNECTORS Resistance Readings | 56 | |----------|---|---------|-----|---|-----------------------------------------------------------|----| | | | TABLE | 4 | - | ALT SUMMARY - NEOPREME CONNECTORS Resistance Readings | 57 | | | | TABLE | 5 | ~ | ALT SUMMARY - NEOPRENE CONNECTORS Resistance Readings | 58 | | | | TABLE | 6 | ~ | ALT SUMMARY - NEOPRENE CONNECTORS Resistance Readings | 59 | | | | TABLE | 7 | - | ALT SUMMARY - POLYURETHANE CONNECTORS Resistance Readings | 60 | | | | TABLE | 8 | - | ALT SUMMARY - POLYURETHANE CONNECTORS Resistance Readings | 61 | | | | TABLE | 9 | _ | ALT SUMMARY - POLYURETHANE CONNECTORS Resistance Readings | 62 | | | • | TABLE 1 | 10 | - | ALT SUMMARY - POLYURETHANE CONNECTORS Resistance Readings | 63 | | | • | rable 1 | l 1 | - | ALT SUMMARY - POLYURETHANE CONNECTORS Resistance Readings | 64 | | | | | | | ALT SUMMARY - POLYURETHANE CONNECTORS | 65 | ## LIST OF FIGURES | | | | Page | |--------|----|------------------------------------------|------------| | FIGURE | 1 | Flow Chart, Connector Clamp Evaluation | 2 | | FIGURE | 2 | Portsmouth Connector, MIL-C-24231 | 3 | | FIGURE | 3 | Test Connector | 5 | | FIGURE | 4 | ALT Failure Analysis, Polyurethane Boot | 10 | | FIGURE | 5 | ALT Failure Analysis, Neoprene Boot | 11 | | FIGURE | 6 | ALT Failure Histogram | 13 | | FIGURE | 7 | Test Connector with Clamps | 16 | | FIGURE | 8 | Oetiker Clamp | 25 | | FIGURE | 9 | Band-It Preform Clamp | 26 | | FIGURE | 10 | Band-It Scru-Lokt Clamp | 27 | | FIGURE | 11 | Test Connector Sleeve | 29 | | FIGURE | 12 | Sectioned Test Connector with Receptacle | <b>3</b> 0 | | FIGURE | 13 | Connector Mold | 31 | | FIGURE | 14 | Oetiker Clamp with Crimping Tool | 32 | | FIGURE | 15 | Connector with Oetiker Clamps | 33 | | FIGURE | 16 | Band-It Clamp with Tensioning Tool | 34 | | FIGURE | 17 | Pressure Tank Pressure Fittings | 37 | # THE APPLICATION OF MECHANICAL CLAMPS TO PORTSMOUTH CONNECTORS #### BACKGROUND This report covers the work performed on Phase II of Contract No. N00173-79-C-0129, "Research, Development, Test and Evaluation of Cables and Connectors." This contract was awarded to Texas Research Institute, Inc. (TRI) in May 1979 as part of the FY79 Sonar Transducer Reliability Improvement Program (STRIP). The STRIP Program investigates problems of current interest to the fleet. An objective of STRIP is to provide engineering solutions to problems that improve the life and reliability of sonar hardware. Many submarine transducers and hydrophones rely on the MIL-C-24231 (Portsmouth) connector to provide electrical transmission through the pressure hull. This connector, however, has had a history of premature and sporatic failure due to water intrusion. One factor contributing to water leakage is the deterioration or absence of the rubber-to-metal bond between the molded connector boot and metal sleeve. It has been suggested that a mechanical clamp applied over the molded boot at the metal bond interface would aid in preserving the watertight integrity of the connector and would be a rapid, inexpensive quality improvement to connectors. The objective of this laboratory program was to evaluate that suggestion by applying mechanical clamps to Portsmouth connectors and measuring the effect of clamps on connector leakage. #### **APPROACH** A six-task program was designed to meet the objectives at this investigation and is shown schematically in FIGURE 1. The first task required that a test plan be developed to statistically evaluate the efficiency of clamps. To do this, potential clamping systems were identified and clamp samples obtained. A hypothetical mission profile was assembled which detailed the expected use stresses that submarine and surface ship connectors experience in service, and the data were used to define testing parameters. The MIL-C-24231 (Portsmouth) connector is shown in FIGURE 2. Three water leakage paths are identified: - 1. Between the cable and molded boot. - 2. Between the metal sleeve and molded boot. - 3. Through the "0" ring seal. Manuscript submitted July 27, 1981. FIGURE 1 - Flow chart: connector clamp evaluation FIGURE 2 = Portsmouth connector, MIL-C-24231 Since the objective of this investigation was to determine the efficiency of clamps applied to the molded boot, it was necessary to design a test connector that would incorporate the physical and materials parameters of the Portsmouth connector and provide a means to monitor leakage at each of the three possible leakage paths. The test connector shown in FIGURE 3 was designed to monitor leakage. This connector incorporated three electrical probes to indicate the presence of water in the connector and to identify the leakage path. A failed connector was defined as one showing continuity between water outside of the connector and either of the resistance probes located in the connector body, when the resistance was measured with a megohmeter. Each connector failure identified by resistance measurements was confirmed by applying dye penetrant, sectioning and visually inspecting the leakage path to assure that "failure" in each case meant "leakage". Also in the initial task, a two-part connector test plan was developed. The first part addressed the manufacturing variables of connectors and the second addressed clamp efficiency. Several polyurethane and neoprene compounds are used in manufacturing MIL-C-24231 connectors, and it was anticipated that a minimum of three clamp designs would be evaluated in the program. In addition, it was desired to evaluate shielded and non-shielded MIL-C-915/8E cable. It became clear that it was not possible to manufacture a statistically significant number of connectors incorporating all possible variables and still obtain meaningful test data. To narrow these variables to a manageable number, the two boot molding clastomers most commonly used by Navy facilities, the presence or absence of an elastomer-to-metal bond, three clamp designs and both shielded and nonshielded MIL-C-915/8E cable were evaluated in a screening test. Connectors incorporating the variables to be screened were assembled in the 32-unit factorial matrix shown in TABLE 1. The desired result of screening was to select a single connector design of boot material, clamp design and cable type most likely to result in low leakage rates. The connector of the identified design and a control connector made to the design used most by Navy facilities could then be made in statistically significant numbers to allow evaluation of mechanical clamp officiency. A screening test sequence was designed to qualify the connectors in the matrix following the production acceptance procedures of M1.-C-24231. After qualification, stress levels were gradually increased until sufficient connector failures were produced to allow evaluation of the construction variables. The object of second test sequence was to evaluate clamps on the connector identified as most likely to succeed by accelerating the aging process of the test and control connectors. The resulting Accelerated Life Test (ALT) considered the stress limits of the Mission Profile and data obtained from the screening test so that aging stresses were accelerated without exceeding design limits of the connector construction materials. FIGURE 3 - Test connector In the second task, 96 test connectors were manufactured. The first 32 units followed the matrix described in TABLE 1. The second 32 were manufactured to the preferred design as determined by the results of the factorial matrix, and the last 32 were control connectors. The control units were made without clamps using shielded MIL-C-915/8E, DSS-3 cable, and polyurethane PR-1547 with PR-420 primer on the metal sleeve and PR-1523M on the neoprene cable. Molding of the connectors followed procedures set forth in Molding & Inspection Procedures for Fabricating Connector Plugs for Submarine Outboard Cables, NAVSHIPS 0902-022-2010. The third task exercised the test sequence developed for the factorial matrix, and Task 4 consisted of the accelerated exposure and testing of 32 connectors with clamps and 32 control connectors following the ALT sequence. Task 5 reviewed and analyzed the data, and the analysis was included in the published reports of Task 6. TABLE 1 FACTORIAL MATRIX | | ]<br>!<br>! | | RETHANE | NEOPRENE<br> (JOY 319,735-8) | | | | |-----------|-------------|----------|------------|-------------------------------|------------|--|--| | | <br> <br> | BONDED | NOT BONDED | BONDED | NOT BONDED | | | | | SHIELDED | <u>x</u> | X | X | X | | | | NO CLAMP | UNSHIELDED | <u> </u> | <u> </u> | <u> </u> | X | | | | | SHIELDED | X | <u> </u> | X | X | | | | OETIKER | UNSHIELDED | X | <u> </u> | X | X | | | | BAND-IT | SHIELDED | X | <u>X</u> | X | X | | | | PREFORMED | UNSHIELDED | X | X | X | X | | | | BAND-IT | SHIELDED | X | X | X | X | | | | SCRU-LOKT | UNSHIELDED | X | <u> </u> | X | <u> </u> | | | TOTAL MATRIX -- 32 UNITS #### DISCUSSION OF RESULTS AND CONCLUSIONS This investigation addressed the efficiency of mechanical clamps applied to the molded boot of Portsmouth Connectors. The specific questions that were pursued were: - 1. Does a clamp prevent leakage in unbonded connectors? - 2. Does a clamp lose effectiveness with time in service? - 3. Can a "best" clamp design be identified? - 4. Does a clamp decrease bond degradation rate? - 5. Can the lifetime of a connector be determined? - 6. What is the efficiency of clamps applied to connectors? - 7. What cost trade-offs are associated with connectors? The following discussions address these questions. #### Unbonded Connectors It was determined that clamps improve the water tight integrity of non-bonded connectors. Test connectors were made with both polyurethane and neoprene molded boots without bonds between the boot and metal sleeve, and between the boot and cable jacket. To insure lack of bond, no adhesives were used in manufacturing the connectors, and a mold release agent was applied to the metal sleeve and to the cable jacket. The completed connectors were examined and the boot was easily separated from both the cable and sleeve. Of eight polyurethane non-bonded connectors tested in the factorial matrix, one of six clamped connectors and none of two unclamped connectors survived the total test cycle. Of the neoprene molded connectors, six of six non-bonded clamped units survived along with one of two non-bonded not clamped connector. The data do suggest that clamps do not increase leakage, do decrease leakage of unbonded neoprene connectors, and may improve unbonded polyurethane connectors. It should be noted, however, that the statistical significance of these results indicates that the performance difference between the polyurethane boot and the neoprene boot may override clamp performance with the neoprene material performing better than the polyurethane. #### Service Influence on Clamps Thirty-two clamped connectors were subjected to accelerated life testing (ALT) for a total of 32 weeks. The ALT exposures were within exposures of the Mission Profile and the connectors were not stressed above levels experienced in service. At the conclusion of the test sequence, four clamped connectors had failed (12.5%), one of which was identified as a manufacturing defect failing during the first weekly cycle. The other three failed within weeks 21 and 23. The test was terminated before the failure rate of clamped connectors was sufficient to predict wearout or detrimental effects of service life on clamp efficiency. From the available data and estimates of acceleration factors shown in Appendix C, it may be concluded that clamps can remain effective for a minimum of eight years in service. #### Clamp Design Preliminary analysis of the Portsmouth connector system led to guidelines for selecting a clamp. Included in the guidelines were: - Clamp material must be of relatively high strength and modulus and show low stress relaxation. Most metal clamps have these properties. - 2. Clamp material must be non-corrosive in sea water or if corrosive, must have a satisfactory service history. Type K-Monel is relatively inert in sea water and type 316 stainless steel, although subject to crevice corrosion, has had a satisfactory service record on transducers and hydrophones. - 3. The clamp must be designed to be tightened to a consistent pressure. Three general types of clamps are commercially available: a continuous band tightened by crimping or swaging, an open band closed and tightened by means of a self-contained screw, and an open band closed and tightened using an external tensioning device and closure clip. - 4. For installation on existing connectors, the clamp must be an open type or be able to open sufficiently to fit over the connector tightening nut. - 5. The clamp must be securely closed after tightening. Three clamps were identified that met the above guidelines. These were the Oetiker One Ear clamp, Band-It Jr. Preform and Band-It Scru-Lokt. The factorial matrix test results showed a possible but not statistically significant advantage of the Band-It Preform over the other two clamps. However, ease of installation made the Preform clamp preferable over the others and it was selected for further evaluation. #### Bond Degradation Rate Analysis of the test connectors at the conclusion of 32 weeks of ALT showed that all the polyurethane and neoprene molded connectors had marginal or nonexistent bonds at the sleeve-to-boot interface. Typical connectors analyzed at the conclusion of the ALT are shown in FIGURES 4 and 5. Both boot types exhibited adhesive failure when the boot was pulled from the sleeve with failure occurring between the adhesive and elastomer. The bond at the boot-to-cable interface also appeared deteriorated. Polyurethane units were sporatic in bond tenacity; some units showed a combination of adhesive and cohesive failure. All units with neoprene ${\bf FIGURE}(1) = {\it Polyurethane control connector ALT bond analysis}$ FIGURE 5 — Neoprene clamped connector ALT bond analysis boots showed only cohesive failure. Examination of the bonds under clamps at the cable and sleeve did not appear to be of better quality than the bond away from the clamps. To obtain an indication of cable bond deterioration, samples of cable jacket bonded to polyurethane and to neoprene were aged in the ALT sequence with test connectors. After four weeks of ALT the polyurethane-to-cable bond strength decreased by approximately 26% and the neoprene-to-cable bond strength by approximately 21%. After a total of eight weeks of aging the polyurethane remained at the same level of 26% decrease and the neoprene decreased by a total of 83%. While the neoprene bonds lost far more of their strength, they were still showing cohesive failure. The polyurethane-to-cable interface failed adhesively. It can be concluded that both neoprene and polyurethane bonds degrade in service, and the application of clamps does not inhibit this degradation. #### Connector Lifetime Prediction The results of the factorial matrix experiment and the ALT testing show that the lifetime of a connector is dependent on construction. When subjected to the extreme stress of the factorial matrix screening test 58% of the clamped connectors survived compared with 37% of unclamped connectors. Considering mean cycles to leakage failure, clamped connectors ranged from 14 for Oetiker clamped connectors to 47 for Band-It Preform clamped connectors and 28 for Band-It Scru-Lokt connectors. This compares with 16 for unclamped connectors. In the less severe ALT sequence, unclamped control connectors failed at a rate suggesting wearout failure as shown in the histogram of FIGURE 6. Equivalent service life exposures estimated from acceleration factors for water permeation in neoprene and polyurethane are derived in Appendix C. The acceleration factors used are shown in TABLE 2 and show that 32 weeks of ALT exposure is approximately equivalent to 14 service years for neoprene connectors and 10 years for polyurethane. Using the factors in TABLE 2, it may be seen in FIGURE 6 that ten percent of the clamped neoprene connectors failed in 21 weeks (equivalent to approximately 8.8 years) and ten percent of the unclamped polyurethane connectors failed in eight weeks (equivalent to approximately 2.5 years). It can be concluded that the lifetime of connectors is dependent on construction parameters such as elastomer selection and the presence of clamps. #### Clamp Efficiency A total of 64 connectors was made for determining clamp efficiency. Thirty-two of these were control connectors constructed with a polyure-thane (PR-1547) molded boot and bonded with recommended bonding agents. DSS-3 shielded cable was used and no clamp was applied. FIGURE 6 - ALT failure histogram for neoprene and polyurethane connectors TABLE 2 ONE-WEEK ALT EXPOSURE SUMMARY | | | NEOPI | RENE | POLYURE | THANE | |-------|----------|--------|------------|---------|------------| | EXI | POSURE | Accel. | Equiv. | Accel. | Equiv. | | Hours | Temp, °C | Factor | Hours | Factor | Hours | | 2 | -78 | 0 | 0 ( | 0 | 0 | | 8 | 25 | 1 | !<br>! 8 ! | 1 | 8 | | 158 | 70 | 23 | 3634 | 17 | 2686 | | 168 | | | 3642 | | 2694 | | 1 | | | (0.42 yr) | | (0.31 yr) | TOTAL The remaining thirty-two connectors were molded of neoprene (Joy No. 319,735-8) and bonded with recommended bonding agents. DSS-3 shielded cable was also used in assembly. Each of these connectors was fitted with a Band-It Preform clamp over the boot at the metal sleeve interface. Sixteen of these test connectors were also fitted with a Band-It Preform clamp over the boot-to-cable interface. FIGURE 7 shows the configuration of a test connector fitted with a clamp at both bond interfaces. At the conclusion of the test sequence eighteen of the thirty-two (56%) control connectors failed and a total of four of thirty-two (13%) clamped connectors failed. Of the clamped connectors that failed, all were clamped only at the sleeve. None of the connectors clamped at both sleeve and cable failed. Analysis of the failures was made and of the eighteen failed polyurethane control connectors, ten were analyzed as sleeve bond failures and two as cable bond failures. An additional three showed failure at both bond areas. One control connector failed on the first cycle and showed a manufacturing defect. The remaining two control failures cracked because of handling during cold shock. Of the clamped connectors, one showed a manufacturing defect after failing the first cycle, two failed at the sleeve hond interface and one at the cable bond interface. It can be concluded that the clamped connectors show less tendency to leak than do the control non-clamped connectors, and that clamp application does not increase the incidence of leakage in connectors. #### Clamp Economics The cost of all the clamps identified was minimal compared to the manufacturing and materials cost of the Portsmouth connector. In the test connector manufacturing operation, approximately five minutes additional time was required to apply a clamp to a connector. Compared with a total manufacturing time of 1 to 2 man hours for parts preparation for molding, clamp addition would add 3-7% to the labor cost of a connector. By applying clamps, a positive change in connector lifetime can be expected which would effectively reduce connector costs. It can be concluded that clamp application to Portsmouth connectors will result in a slight overall cost increase but will appreciably prolong the average service life of connectors. K-1.89 FIGURE 7 Test connector with Band It Preform clamps #### DISCUSSION OF TASKS The detailed data measurements and procedures associated with the test program are presented in the following sections. #### Mission Profile A mission profile is a description of environmental and mechanical stresses to which hardware is exposed during the lifetime of that hardware. Environmental stresses include temperature extremes, thermal shock, moisture exposure, ultraviolet radiation, pressure excursions and other exposures that contribute to materials degradation or change in properties. The information developed in a mission profile is essential for product design and for verification test design. The maximum and minimum stress exposures called out in a mission profile are used as guidelines to design and test products. As such, the mission profile is a tool for ensuring product reliability and life expectancy. For this program, a hypothetical mission profile for connectors was developed to provide maximum and minimum stress limits. Three categories of mission profile were established, Transportation and Storage (TABLE 3), Installation and Maintenance (TABLE 4) and Service: SSN (TABLE 5), SSBN (TABLE 6) and Surface Ship (TABLE 7). The general format used for describing the mission profile is as follows: - Column 1 Exposure number for identification. - Column 2 Exposure description. - Column 3 Range of exposure, maximum and minimum values that can be experienced. This includes the entire environmental range the item may be expected to encounter. - Column 4 Circumstances under which the exposure occurs. - Column 5 Time weighted description of extreme exposure normalized to one year's estimated stress, based on maximum or minimum exposure values. - Column 6 Time equivalent of extreme exposure. - Column 7 Time weighted description of a typical or average exposure normalized to one year's estimated stress. - Column 8 Time equivalent of typical exposure. - Column 9 Companion exposures that may contribute synergistically to material changes in service. ' Information contained in the mission profile was collected from various sources. Among these are product specifications, steaming data or estimates thereof, consensus opinion of Naval personnel associated with maintenance and fleet operation, published literature and manufacturers' opinions. In many instances hard numerical data for an exposure were not available and the data presented were therefore estimated. TABLE 3: MISSION PROFILE - TRANSFERIATION AND STOKAS | | | | | DURATION : | time or | evelessy | | | | |----------------|-------------------------------|--------------------------------|-------------------------------------|---------------------------------------------------------|-----------------------|-----------------------------------------------------|-----------------|-------------------------------------------------|---| | NO - | EXPOSURE | ENPOSURE<br>RANGE | OCCURANCE | EXTREME | TPFR ' | CONTINUING<br>LONG TERM | Tomas<br>Line. | Company of | | | !<br>1 | Temperature <br> in air | | Storage<br> Outside<br> | forctor<br>5 brs day x<br>180 days | forms ( | | | har Aitv | | | 2 | <br> | !<br> <br> | <br> | 1 -30°C<br>1 12 hrs day x<br>1 30 days | | = 65 <sup>25</sup> - \$15 - 4 \$5 <sup>25</sup> ( | Transco breci | Mitrwister<br>Air Politice | | | <u> </u> | Pressure in late | <br> 12 to 100 <br> kPa | Storage<br>Air<br>Transporta- | T 12 kPa<br>T 2 tlights x | in in | ••• | | -<br>- Hamidity | | | 1 -5 | <br> | <br> | tion<br> Storage<br> Storage | 1 8 hrs<br>1 -30°c | r .<br>1226 1 | Ino kPa | | Air Pellution | | | | <br> | +38°C Pew <br> Point <br> | 1<br> | Dew Point i 30 days +38°C Dew Point | Toggo I | | | Temperature<br> Eltraviolet<br> Air Pollution | | | 1 8 | | <br> -<br> - | 1 | 1_120_days | 1 | +10 <sup>-7</sup> to 35 <sup>8</sup> 0<br>Dew Point | Tskult tirst | | | | a<br> <br> 10 | Ultraviolet<br> Radiation<br> | ! cm² → 290= | Storage<br> Outside<br> Uncovered | 1 2625 w cm <sup>2</sup><br>1 1.5 hrs day<br>1 270 days | hrs : | ************************************** | | Temperature Humidity Air Pollution | | | | <br> | <br> <br> | Storage | | 154 | 8 hrs day x | 1 | 7 | | | 1 12 | Pollution<br> <br> - | <br> | ·<br>! | 1 8 hrs day | hrs | 200 to 50 PSI | j<br>Diano tiro | Temperature<br>Humidity<br>Iltraviolet | ٠ | | | <br> | <br> | Transporta- | | <br> se-1<br> ries! | 8 brs day tor<br>180 days | '<br> <br> | | | a = PSI = Pollution Standard Index per Fed. Reg. Vol =7 #219 b = Based on Los Angeles Experience, 1975. ozone is major contaminant. c = Rough handling as defined by specification due to lack of service data. TABLE 4 MISSION PROFILE - INSTALLATION AND MAINTENANCE | | | | I | | RATION | (Time or Cycle | s) | | |----|------------------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------|--------------------------------------------------|------------------|------------------------------------------| | NO | EXPOSURE | EXPOSURE RANGE | OCCURANCE | EXTREME | PER 1<br>YR. | CONTINUING LONG TERM | PER 1 | COMPANION<br>EXPOSURES | | | Temperature<br>in Air | -30° to +60°C | Dry Dock <sup>e</sup><br>Winter | -30'C tor <br> -30 Pays | 720<br>Hrs | <br> | | Humidity<br>Air Pollution | | 2 | !<br>! | <br> | | <br> | | -11"to +11°C<br> for 180 Days | 4320 Hrs | 1 | | 3 | <br> | | | +60°C for<br> 8 Hrs/Day<br> 90 Days | 720<br>Hrs | | | | | 4 | !<br>!<br>! | i<br>[<br> | | <u> </u> | | +11°to +39°C <br> for 180 Days | | | | 5 | Temperature<br>in Water | <br> -2° to +32°C | Dockside<br>Winter | -2°C for<br> 90 Days | 2160<br>Hrs | !<br>! | | !<br>}<br> | | 6 | 1<br> | | | | | -1° to +15°C <br> for 180 Day | 4320 Hrs | !<br> | | 7 | !<br> <br> | 1 1 | Dockside<br>Summer | +32°C for<br>90 Days | 2160<br>Hrs | | ~ | <br> | | 8 | | | | | <u> </u> | +10°to +32°C <br> for 180 Day | | <br> | | 9 | <br> Thermal<br> Cycling<br> | <br> T≤50°C<br> <br> | Dry Dock <sup>e</sup> | T = 50°C<br> 1 Cycle/Day<br> 90 Days | <br> 90<br> Cycles | )<br> <br> | | <br> Humidity<br> Air Pollution<br> <br> | | 10 | <br> | <br> | | | | T = 30°C<br>11 Cycle/Day<br> for 180 Days | <br> 180 Cycle | <br> | | 11 | <br> Humidity<br> <br> | -30° to<br> +38°C Dew<br> Point | Dry Dock <sup>c</sup><br>Dockside | , | 720<br> 720<br> Hrs<br> | <u> </u> | <br> | <br> Temperature<br> Air Pollution<br> | | 1: | | <br> | <br> | +38° Dew<br> Point<br> 120 Days | 2880<br> Hrs | | | <br> | | 1 | <br> | 1 | [<br> <br> | | <br> <br> | +10°to +32°C<br> Dew Point | 8640 Hrs | <u> </u> | | 14 | Air<br> Pollution | 0 -500 PSI <sup>a</sup> | <br> Dockside and<br> Dry Dock <sup>c</sup><br> | 500 PSI<br> 8 hrs/day<br> for 3 days <sup>h</sup> | <br> 24 Hrs<br> | | <br> <br> <br> - | <br> Temperature<br> Humidity<br> | | 1 | 51 | }<br> <br> | !<br> <br> | | )<br> <br> | <br> 200 to 50PS1<br> 8 hrs/day<br> for 180 days | 1 | <u> </u><br> | a - PSI ~ Pollution Standard Index per Federal Regulations Vol. 44 #219. b - Based on Los Angeles experience, 1975. Ozone is the major contaminant. c - Drydock frequency varies with ship type. DABLE MISSING PROFITE OF STABLE C | | • | , | | THEAT SHEET | Jan Ca | t officer of ter | · , | | |---------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|---------------|------------------------------------|--------------|------------------------------------------------| | ٠. | . 1 VP S AF | FATE F | 100 to ANN 100 | | 38 H | | PER 1<br>YE: | COMPANION TEXPENSE | | ; | Temperature<br>(e. Arr | ••• | * : : : : | te describidades 1 To 12 Te 1 14 Into 15 Te 1 | • * *: | , | | complete<br>Non-Fellow<br>For- | | ; | | | Ar fr Sor | | | to a second | · | | | | | | | gal dass | | | | | | | Temperatura<br>in Sea water | -2 +32<br>+32 | Proof of Serv | W. Arres | 216 - 16 | | | trensure<br>Stratson | | •• | | | Ar fire term | Tradition<br>19 days | 12100 00 | • | • | | | - | | | | • | | Tell to the district of the second | | | | . e | Permel<br>Ovelim | THE THIRD | tescherty. | · • | | | · | Humidit.<br>Air<br>Pullation | | | <del>*</del> · · · - · | ·<br>• | · · | '* | , | | viles. | | | . 1 . | Thermal<br>School | The State of S | Diving-Tropic | ma gwari<br>Tanan a mwan | verse s | | | | | 111 | · | | Diving-Arctic | ি কিং উপীলি<br>- | are la s | | | | | 113 | Pressure | PO to<br>also apa | At Sea | davi Gave | 180 15 | , | • | Terrerature<br>Tibration | | 1:3 | 1 | | | • | | | lar<br>Nes | | | 1.4 | I<br>Pressure<br>Poycline | _1=m <p+=1mm<br>:=¥Pa</p+=1mm<br> | At Sea | "Tom" ti Africk pa<br>"2 davi 9 mdass | | | | | | 125 | | | :<br>• | | • | vermon providental<br>Godava | is<br>eveles | | | 116 | T<br> Hamidity | "-55" to<br>"+38 (* Dew | | r<br> 35 m 5.1.<br> 24 hr (day) | town ty | , | | Temperature<br>Air | | | :<br>}<br>! | !<br>! | ,<br>,<br>, | | | 10° to 32° r<br>[7.84] 270 days | nago<br>Trs | | | 118 | Air<br>Pollution | 0-500<br> - pg pa | | 'Sou rai<br>'8 brs'day<br> tor 3 days <sup>c</sup> | ] 2+ +r | | | Temperature<br>Humidity | | 119 | <br> | 1<br>1<br>1 | <u> </u> | ( | : | | live<br>Thrs | | | 120 | <br> Vibration<br> - | <br> Per MIL-<br> STD-167-1b | I<br>lAt Sea<br>I | Per MIL-STD - | <br> series | | | Temperature<br>Pressure | | 1<br>121<br>1 | <br> Explosive<br> Shock | <br> Per CIPS <sup>b</sup> <br> | ;<br>1<br>1 | :<br>!Per CIPS<br>! | it<br>(series | | | Pressure | | 122 | Tensile<br> Load,<br> Static | 1 | IAII<br> Service<br> | <del> </del> | 1 | | hrs | Humidity Temperature Vibration Air i Pollution | NOTES: - a PSI Pollution Standard Index per Fed. Reg. Vol 44 #219. b Vibration and explosive shock as defined by specification due to lack of service data. c Based on Los Angeles experience, 1975. Ozone is the major contaminant. d Static stress based on 10 meters of unsupported cable. DSS-2 = 6 kg, DSS-3 = 10 kg, DSS-4 = 12 kg, FSS-2 = 12 kg. FABLE # SINBS NERVICE | , | ·r | , | | DURATION F | EXPOSUR | f Ors or evole | ·~`) | : | |---------------|--------------------------------------|--------------------------------------------|-------------------------------------------------|------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------|----------------------------------------------| | No. | 1 FXPOSURE | RANGE (F<br>EXPOSURE | - occurance | FYTREME | PER 1 | CONTINUING<br>LONG TERM | PER 1 | COMPANION FERROSCRE | | ! 1<br> | Temperature Air | 55 to - to -<br>+to 550<br> | Thorax (%) | *M1 C, 1.<br>Mr day; a days<br>1-30 C 12 %r<br>day; 2 day | n tra<br>124<br>tra | ************************************** | r<br>r <sub>144</sub> r | Humidity<br>Pollution<br>Air<br>Pollution | | <br>5 | r<br>Temperature<br>Sea Water | n<br>2 - ts<br>-+42 ct | Arctic Sur-<br>tace<br>Tropical<br>Service | Tubble tor<br>21 days<br>+32 fotor<br>21 days | * 6 | tor to days | . hr | Pressure | | | | | Artic Service | | 6.48<br>Fre | r<br>- 100 +0 41 6 | r<br>Bakir | : | | e<br>q | Thermal<br>Cv.ling | e e e e e e e e e e e e e e e e e e e | Pockside | T = 50°C | t eyeles | ter 27m days - 7 - ₹ - 30% | T bir | Humidity Air Pollution | | 100 | r<br>Thermal<br>Shock | T - SEC | <br> T<br> Diving=Tropic<br> <br> Diving=Arctic | 1 | T 300<br>i cycles<br>i 300<br>i cycles | • | cvcles | r - · · · · · · · · · · · · · · · · · · | | 12 | T<br>Pressure | The to | TAt Sea | 14100 kp.<br>for 300 days | 7200<br>hrs | 7700 to 2700kPa<br>for 300 days | | Temperature!<br> Vibration | | | Pressure<br> Cvcling | :<br> 100-27-2100<br> | At Sea | f<br>100 to 4100kDa<br>12/day, 300days<br> | | , , , , , , , , , , , , , , , , , , , | T <sub>601</sub> . | | | ¦ | Humidity | -55" to<br> -55" to<br> <b>+38</b> °C Dew | | :<br>t<br>!38°C D.P. | r<br>1<br>Taak br | 1700 to 2100kPa | | Temperature' | | <br> 17<br> | <br> | Point | | 124 hr'day;<br>160 days<br>1 | | <br> | 1440<br>hr | Air<br>Pollution | | | <br> Air<br> Pollution<br> <br> <br> | 0-500<br> PSI <sup>a</sup><br> <br> | I | <br> SOC PSI<br> 8 hrs day<br> for 3 days <sup>c</sup><br> | 24 hr <br> | <br> -<br> -<br> -<br> | 1<br>148 hr | Temperature<br>Humidity | | <br> <br> 20 | <br> Vibration<br> | <br> Per MIL=<br> STD=167-1b | | <br> | <br> | tor 60 days | 1 | Temperature<br>Pressure | | | Explosive<br> Shock | Per CIPSb | Į. | | <br> series | T | 1 : | Pressure | | ł | Tensile<br>Load,<br>(Static | Note d | All Service | <del>;</del><br> <br> <br> <br> <br> | <del> </del><br> <br> <br> <br> | Continuous<br> Load per<br> Note d | 1 : | Humidity Temperature Vibration Air Pollution | NOTES: - a PSI Pollution Standard Index per Fed. Reg. Vol. 44, #219 b Vibration and explosive shock as defined by specification due to lack of service data. c Based on Los Angeles experience, 1975. Ozone is the major contaminant. d Static stress based on 10 meters of unsupported cable. OSS-2 = 6 Kg, DSS-3 = 10 Kg, DSS-4 = 12 Kg, FSS-2 = 12 Kg. TABLE 7 MISSION PROFILE - SURFACE SHIP SERVICE | | 1 | r . | , | DURATION OF | EXPOSURI | thrs or cycle | s) | | |----------|------------------------------|--------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|---------------------------|--------------------------| | NO. | <br> | RANGE OF<br>EXPOSURE | OCCURANCE | EXTREME. | PER 1 | CONTINUESS<br>LONG TERM | PER II | COMPANION<br>EXPOSURE | | | l<br> Temperature | 0° to<br> +38°C | l<br> Dockside<br> <br> | 0° C;<br> 180 days<br> +38°C | 4320 hr | !<br> <br> | [<br> <br> <br> : | Humidity<br>Pollution | | 3 | 1<br> | !<br>! | 1 | 1 | | | <br> 8640' <br> br | | | 4 | Temperature<br> In Sea Water | 7-2° to | Artic | -2 8 C for<br> 180 days | [4320] hr<br> | | i<br> | · · · · · · · · - | | 5 | ,<br> <br> -<br> - | <br> | Tropical | +32°C for<br> 360 days | 8640 hr | | <br> | Pressure<br>Vibration | | <u>6</u> | <u> </u> | <u>.</u><br>T | | İ | + | for 360 days | hr | | | 7<br>8 | Pressure<br> <br> <br> - | 100 to 250<br> kPa<br> | Service<br> <br> -<br> - | 250 kPa for<br> 360 days<br> | | <br> | | Temperature<br>Vibration | | 9 | <br> Humidity<br> <br> | 0° to<br> +38°C Dew<br> Point | <br> Service<br> <br> | 38°C D.P.<br> 360 davs | <br> 8640 hr<br> | <br> | † †<br>! !<br>! ! | Temperature<br>Pollution | | 10 | <u> </u> | <br> | <br> | TO STATE OF THE ST | | 10° to +32°C<br>D.P.; 360 days | | | | 11 | Pollution | <br> 0=500<br> PST <sup>a</sup><br> | <br> Dockside<br> <br> | Son PSI,<br> 8 hrs/day<br> for 3 days | 24 hr | <br> | ]<br> | Temperature<br>Humidity | | | <del> </del> | | | <u> </u> | ļ | 360 days | l br i | | | 13 | [Vibration<br> <br> | Per MH<br> STD-167-1b | | Per_MIL=STD = <br> 167-1<br> | li<br> series<br> | <br> | ! :<br> | Pressure | | | <br> Explosive<br> Shock<br> | <br> Per CIPS <sup>b</sup> | <br> At Sea<br> <br> | <br> Per CIPS<br> - | <br> series<br> | <br> | !<br>!<br>! | Pressure | | | Tensile<br> Load,<br> Static | T<br> Note d<br> <br> - | <br> All Service<br> <br> | f<br>1<br>1 | İ | <br> Continuous<br> Load per<br> Note d | <br> 8640 <br> hr <br> | Humidity | NOTES: - a PSI Pollution Standard Index per Fed. Rep. Vol. 44 #219. - b Vibration and explosive shock as defined by specification due to lack of service data. - c Based on tos Angeles experience, 1975. Ozone is the major contaminant. d Static stress based on 10 meters of unsupported cable. DSS-2 = 6 kg, DSS-3 = 10 kg, DSS-4 = 12 kg, FSS-2 = 12 kg. The importance of Mission Profile data becomes obvious when considering that the environmental stresses to which a connector is exposed throughout its lifetime influence the rate at which the watertight bond of molded boot-to-cable or -to-metal sleeve deteriorates. Bond deterioration, the primary cause of non-"0" ring related connector failures, is a diffusion dependent chemical reaction and is related to temperature, pressure, moisture and time. The Mission Profile for connectors defines these exposures in detail and TABLE 8 summarizes the extremes of the exposures and therefore defines the minimum stress levels connectors must be designed to endure. Definition of these levels is necessary to ensure that materials considered for connector construction can meet the minimum stress requirements and to design laboratory qualification tests for connectors within the stress limits for the intended use. #### Clamps The literature was surveyed to identify clamps suitable for connector application. Selection guidelines were set forth as discussed in the section on Clamp Design and three clamps were identified as probable successful candidates for this evaluation. These were: - 1. Oetiker One Ear clamp, manufactured by Oetiker, Inc. This clamp is available in various diameters and made of Type 316 stainless steel. An internal shield is available to minimize pinching under the ear. Closure is accomplished by crimping the ear closed with a crimping tool. The advantages of this clamp are quick and positive closure. Disadvantages are that the clamp does not adjust to a wide range of diameters, is not available in other non-corrosive materials and can non-uniformly compress the connector boot because of the gap at the ear. FIGURE 8 shows examples of this clamp. - 2. Band-It Jr. Preformed Clamp manufactured by the Band-It Company. This clamp is available in various diameters and made of type 316 stainless steel. Closure is made by an external tensioning tool. The advantages are that the band can be expanded to accommodate many diameters, closure is easily accomplished (but takes longer than the Oetiker clamp) and this clamp is available in type 316 stainless steel. Disadvantages are that the clamp is not available in other non-corrosive materials and a small non-uniform compression area exists under the closure buckle. FICURE 9 shows some examples of this clamp. - 3. Band-It Scru-Lokt clamp manufactured by the Band-It Co. This clamp is cut from a continuous roll of banding and fitted with a closure requiring a screw crimping device. Advantages are that the band and closure are available in Monel and silicon bronze as well as type 316 stainless steel and the band can be cut to size. Disadvantages are that closure takes a longer time than with the previous two clamps and a small non-uniform compression area exists under the buckle. FIGURE 10 shows an example of this clamp. TABLE 8 CONNECTOR STRESS EXTREMES | <br> Exposure | Occurrence | Maximum | Duration/Yr | |-----------------|-------------------|----------|-------------| | Heat, Dry | Storage | +70°C | 900 Hrs. | | Heat, Wet | Tropical Service | +32°C | 8640 Hrs. | | Cold, Dry | Arctic Service | -55°C | 504 Hrs. | | Pressure, Water | Submarine Service | 4100 kPa | 7200 Hrs. | Breeze Roman Com FIGURE 9 - Band-lt preform clamps R 154 FIGURE 10 ~ Band-It Seru-Lokt clamp #### Parallel Technology Mechanical clamps have been successfully used for several underwater applications. Several sonar transducers use metal banding to seal an elastomer boot enclosing the unit as in the rubber boot on the TR-203A, TR-193B, TR-205, TR225, and DT-168A. For these applications, bands made of type 316 stainless steel have been successfully used. In the area of connectors, a connector made by Souriau in France is marketed for high pressure underwater applications. This connector uses a stainless steel strip to secure and seal an elastomer boot encapsulating the connector. Service data are not available on this connector. #### Test Connector Design and Fabrication The test connector was designed to simulate the wetted components of the Portsmouth connector. The metal sleeve was machined to the MIL-C-24231 specifications from K-Monel stock. However, the reduced radius present on the cable end of the Portsmouth sleeve was omitted from the test hardware to simplify manufacturing. The sleeve design is shown in FIGURE 11. The test connector was designed to incorporate leakage probes to detect leakage at the boot-to-cable interface, boot-to-sleeve interface and through the "0" ring seal. The leakage probes were insulated from the metal component of the connector but provided an electrical path from the point of measurement to the test tank if leakage occurred. A double "O" ring system was designed to seal the interior of the connector sleeve during pressure testing. FIGURE 12 shows a cross section of the test connector mounted on a receptacle plug. The "O" ring leakage detector is located between the two "O" rings. The cable—to—boot detector is located at the end of the cable within the molded boot and the boot—to—sleeve leakage detector is at base of the elastomer inside of the sleeve. The connector boots were fabricated in a mold designed to fit the test sleeve. This mold was constructed to be used both for casting the polyure-thane PR-1547 and for compression/transfer molding the neoprene. FIGURE 13 shows the mold used for manufacturing the test connectors. A portion of the completed connectors were fitted with the identified clamps. The Oetiker clamp was tensioned by crimping with a supplied tool as shown in FIGURE 14. FIGURE 15 shows a test connector with closed Oetiker clamps at both bond interfaces. Compression of this clamp was not adjustable and was set by the diameter of clamp and connector. Both Band-It clamps were installed and tensioned using a tool fitted with a torque wrench. A torque value of 30 in-lbs. was determined by measuring torque required to compress the boot by the thickness of the clamp which was 0.022 inches, and this value was used to control installation. FIGURE 16 shows a Band-It clamp with the tensioning tool, and a connector with Band-It clamps installed was shown in FIGURE 7. R 149 FIGURE 11 — Test connector sleeve FIGURE 12 - Sectioned test connector with receptacle plug FIGURE 13 Connector mold FIGURE 14 - Octiker clamp with crimping tool FIGURE 15 — Factorial matrix connector with Oetiker clamps FIGURE 16 Band It preform with tensioning tool ### Connector Testing Test connectors were manufactured to the parameters of the factorial matrix as described in TABLE 1. A test plan was developed as shown in TABLE 9. The first part of the plan followed the acceptance tests in MIL-C-24231 and was used to qualify the connectors. After Cycle 3, the stress was increased each cycle to accelerate the failure rate. For pressure testing a tank with a removable top was used. The top was fitted with sixteen sleeve plugs to allow for pressure testing of half of the matrix at one time. This configuration is shown in FIGURE 17. Leakage measurements were made on each connector at the conclusion of each pressure cycle. The measurements were made using a General Radio Model 1863 Megohmmeter and the resistance readings from each probe recorded. The data obtained during the matrix testing are shown in Appendix A. Not saltwater aging was done in a temperature controlled tank fixturing the connectors so that the elastomer boot and cable were submerged. The connectors were placed in a dry ice chest at $-78^{\circ}$ C for cold shock and in a recirculating air oven at $+70^{\circ}$ C for dry heat aging. For the ALT, the plan shown in TABLE 10 was used. This plan was less severe than the matrix screening test plan and was designed to be repeated on weekly cycles. The pressure tank, saltwater aging tank, cold shock chest and dry heat oven were the same ones used for the factorial matrix. Data obtained from the ALT are shown in APPENDIX B. Resistance readings were made on the connectors in test until flooding of the connector occurred. Resistance readings were found to decrease before flooding occurred and the leakage probe showing the lowest resistance was used to identify the failed bond. Leakage was confirmed by visual bond inspection and in some cases by dissecting the connector after a penetrant dye was applied. TABLE 9 SCREENING TEST PLAN | CYCLE* | DESCRIPTION | CYCLE | DESCRIPTION | |--------|---------------------------------------------------------|-------|-----------------------------------------------------------| | 1 | Pressure cycle** | 11 | Saltwater, 70°C, 64 Hrs. | | 2 | Fresh water, 25°C, 7 days<br> Pressure cycle | | Dry cold, -78°C, 1 Hr. | | 3 | Fresh water, 25°C, 7 days Pressure cycle | | Dry heat, 70°C, 7 Hrs.<br> <br> Saltwater, 70°C, 16 Hrs. | | 4 | Saltwater, 60°C, 60 Hrs. Pressure cycle | | Fresh water, 25°C, 8 Hrs. | | 5 | Dry cold, -78°C, 160 Hrs. Pressure cycle | | Pressure cycle<br> <br> Saltwater, 70°C, 64 | | 6 | Saltwater, 70°C, 60 Hrs.<br> Pressure cycle | 1 | Dry cold, -78°C, 1 Hr. | | 7 | Saltwater, 88°C, 24 Hrs.<br> Pressure cycle | 12 | Dry heat, 70°C, 7 Hrs.<br> <br> Saltwater, 70°C, 64 Hrs. | | 8 | <br> Saltwater, 88°C, 168 Hrs.<br> Pressure cycle | | Dry cold, -78°C, 1 Hr. | | 9 | <br> Saltwater, 70°C, 168 Hrs.<br> Pressure cycle | | Dry heat, 70°C, 7 Hrs.<br> <br> Saltwater, 70°C, 16 Hrs. | | 10 | <br> Saltwater, 70°C, 168 Hrs.<br> Pressure cycle<br> | | Fresh water, 25°C, 8 Hrs. Pressure cycle | <sup>\*</sup> Each test cycle is terminated by a set of insulation resistance measurements. <sup>\*\*</sup> Pressure Cycle = 0-690 kPa and Hold for 5 Min. 0-690 kPa and Hold for 5 Min. 0-690 kPa and Hold for 5 Min. 0-13.8 MPa and Hold for 2 Hrs. FIGURE 1. Pressure for a compositor littings TABLE 10 ACCELERATED LIFE TEST PLAN | Exposure | Time, Hrs. | Temp, °C | Conditions | |--------------|------------|-----------|--------------------------------| | 1 | 64 | 70 | sea water soak | | 2 | l | <br> -78 | dry cold | | 3 | 7 | <br> 70 | dry heat | | 4 | 16 | 70 | sea water soak | | 5A* | > 8 } | 25 | fresh water and pressure cycle | | 5B* | | 70 | sea water soak | | 5 | 16 | 70 | sea water soak | | 7 <b>A</b> * | 8 1 | 70 | sea water soak | | 7B* | | 25 | fresh water and pressure cycle | | 8 | 40 | 70 | sea water soak | | 9 | 1 | <br> -78 | dry cold | | 10 | 7 | 70 | dry heat | | TOTAL | 168 | I | l | Repeat cycle. <sup>\*</sup>Order reversed for one half of the connectors. ### TEST RESULTS ### Factorial Matrix The factorial matrix containing 32 connectors, as shown in TABLE 1, was tested for the 12 cycles listed in TABLE 9, and the connectors surviving at the conclusion of the test are summarized in TABLE 11. Fifty-three percent of the connectors had leaked by the test conclusion. In TABLE 12 the number of test cycles to failure for each connector is listed and a comparison is made between variables by summing the total survival time of each variable and calculating the mean number of cycles to failure. This weighted performance is tabulated in TABLE 13. Inspection of TABLE 13 suggests that neoprene is superior to polyurethane in this application. Also the Band-It Preform and Scru-Lokt type clamps seem to offer some advantage. The reader is cautioned to avoid trying to draw more subtle conclusions from TABLE 13. One must remember that the figures of merit (mean cycles-to-failure estimators) displayed in the table are distributed random variables, i.e., repetition of the entire experiment would yield different results. Ideally, appropriate dispersion measures should be associated with the TABLE 13 entries. Calculating dispersion data for the cable and connector factorial experiment is complicated because not all the loading cycles are of the same severity and the raw cycles-to-failure data have not been cataloged by specific distributional type. To roughly fill this gap we might imagine that the cycles to failure in a particular category are normally distributed. In this case (wearout model) the fractional uncertainties of the mean-cycleto-failure entries of TABLE 6 would equal $r^{-1/2}$ where r is the observed number of failures in the categories of interest. If the random hazard or exponential model is actually more appropriate, these dispersion measures would be somewhat different and based on the <sup>2</sup> distribution. As a result of the factorial analysis the following became the preferred construction. BAND-IT Preform or Scru-Lokt Unshielded or shielded cable Neoprene elastomer Bonded interface For a final selection of clamp, Band-It Preform was picked because preassembly was not required. Since shielded cable is used in fleet service to a much greater extent than unshielded cable, the shielded type was selected. Band-It Preform clamp and MIL-C-915/8E, DSS-3 cable were used for manufacturing the remaining test connectors. Reviewing the results of the matrix test, it is noted that seven of eight neoprene connectors made without adhesive survived the test sequence, and only one of the eight similarly made polyurethane connectors survived. ### TABLE 11 FACTORIAL MATRIX TEST RESULTS ### NUMBER OF CONNECTORS SURVIVING | | | NEOPRENE (16) | POLYURETHANE (16) | TOTAL (32) | |--------------|-------|---------------|-------------------|------------| | CLAMPED | (24) | 11 (92%) | 3 (25%) | 14 (58%) | | NOT CLAMPED | (8) | 2 (50%) | 1 (25%) | 3 (37%) | | SHIELDED | (16) | 5 (62%) | 2 (25%) | 7 (44%) | | UNSHIELDED | (16) | 8 (100%) | 2 (25%) | 10 (62%) | | BONDED | (16) | 6 (75%) | 3 (37%) | 9 (56%) | | NOT BONDED | (16) | 7 (87%) | 1 (12%) | 8 (50%) | | OVERALL SURV | IVING | 31 (81%) | 4 (25%) | 17 (53%) | TABLE 12 FACTORIAL MATRIX, NUMBER OF CYCLES TO FAILURE | | | POLY | POLYURETHANE | N N | NEOPRENE | |-------------|--------------|--------|--------------|--------|------------| | | | BONDED | NOT BONDED | BONDED | NOT BONDED | | | SHIELDED | + | 7 | 12 | 12 | | NOT CLAMPED | NOT SHIELDED | ∞ | 7 | + | + | | OETIKER | SHIELDED | 8 | 9 | 3 | + | | | NOT SHIELDED | 11 | 7 | + | + | | BAND-IT | SHIELDED | + | 7 | + | + | | PREFORM | NOT SHIELDED | + | & | + | + | | BAND-IT | SHIELDED | 11 | 1 | + | + | | SCRU-LOKT | NOT SHIELDED | 7 | + | + | + | NOTE: + = Did Not Fail in 13 cycles TABLE 13 NUMERICAL COMPARISON OF FACTORIAL EXPERIMENT RESULTS | | T | CUMULATIVE | NUMBER | MEAN CYCLES | |-----------|--------------|------------|----------|-------------| | ATTRIBUTE | TY PE | EXPOSURE | OF | то | | | <u> </u> | (CYCLES)* | FAILURES | FAILURE** | | CLAMPING | NONE | 82 | 5 | 16 | | MODE | OETIKER | 71 | 5 | 14 | | | PREFORM | 93 | 2 | 47 | | | SCRU-LOKT | 84 | 3 | 28 | | CABLE | SHIELDED | 155 | 9 | 17 | | TY PE | UNSHIELDED | 175 | 6 | 29 | | воот | POLYURETHANE | 137 | 12 | 11 | | ELASTOMER | NEOPRENE | 196 | 3 | 65 | | BONDING | BONDED | 177 | 7 | 25 | | | NOT BONDED | 153 | 8 1 | 19 | <sup>\*</sup>Total Number of cycles experienced up until failure of each of the connectors having that attribute. <sup>\*\*&</sup>quot;Cumulative Exposure" divided by "Number of Failures." These data indicate that the pressure qualification tests required by MIL-C-24231 do not assure bond quality in a connector and that factors other than bond quality may greatly influence the leakage characteristics of connectors. Analysis of the failed connectors was made by visual inspection followed by dye penetrant inspection after which each unit was dissected to confirm leakage paths. The failure analyses are tabulated in TABLES 14A and 14B. It should be noted that a high number of cable bond failures were observed and failures at the cable/boot interface are not generally reported from the fleet. Apparently, the high stress levels used in the screening test activated this failure mode and accelerated the observation leakage at the cable much more rapidly than observed leakage in normal service. ### Clamp Efficiency The ALT of TABLE 10 was used to test 32 control connectors and 32 test connectors. The construction as determined was: Preferred Connector: Bonded Neoprene, Joy No. 319,735-8 Band-It Preform Clamp MIL-C-915/8E, DSS-3 shielded cable Control Connector: Bonded Polyurethane, PR-1547 No Clamp MIL-C-915/8E, DSS-3 shielded cable The ALT was terminated after 32 weeks of testing and after four clamped neoprene connectors and eighteen polyurethane control connectors had failed by flooding. All failed connectors were analyzed visually and leakage was confirmed using a dye penetrant. The results of failure analyses are shown in TABLE 15A and 15B and the data summarized into categorizes of identified failures in TABLE 16. Resistance measurements were made on each connector during the pressure cycles, exposures 5A and 7B on TABLE 10, and the data obtained are shown in APPENDIX B. TABLE 14A FAILURE ANALYSIS, FACTORIAL MATRIX | CONNECTOR NO. | CONSTRUCTION | CYCLE FAILED | ANALYSIS | |---------------|------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------| | 11 | Bonded<br>Neoprene<br>Shielded<br>Oetiker | 3 | "O" Ring leakage. Bonds<br>intact. | | 2 | Not Bonded<br>Polyurethane<br>Shielded<br>No Clamp | 4 | Leakage at cable/boot<br>interface. | | 14 | Not Bonded<br>Polyurethane<br>Unshielded<br>Oetiker | 4 | Leakage at cable/boot<br>interface. | | 10 | Not Bonded<br>Polyurethane<br>Shielded<br>Oetiker | 5 | Boot crimped by the clamp<br>at cable interface.<br>Leakage at cable/boot<br>interface. | | 26 | Not Bonded<br>Polyurethane<br>Shielded<br>Scru-Lokt | 5 | Leakage at cable/boot<br>interface | | 6 | Not Bonded<br>Polyurethane<br>Unshielded<br>No Clamp | 7 <br> 7 | Leakage at cable/boot<br>interface. | | 18 | Not Bouded<br>Polyurethane<br>Unshielded<br>Preform | 7 [ | Crack developed in boot<br>starting at the cable<br>Leakage at cable/boot<br>interface. | | 29 | Bonded<br>Polyurethane<br>Unshielded<br>Scru-Lokt | 7 | Leakage at cable/boot<br>interface. | | 5<br> <br> | Not Bonded<br>Polyurethane<br>Unshielded<br>No Clamp | 8 | Crack developed in boot. Leakage at cable/boot interface. | TABLE 14B FAILURE ANALYSIS, FACTORIAL MATRIX | CONNECTOR NO. | CONSTRUCTION | CYCLE | ANALYSIS | |---------------|-----------------------------------------------------|--------|-----------------------------------------------------------------| | | | FAILED | | | 9 | Bonded<br>Polyurethane<br>Shielded<br>Oetiker | 8 | Crack developed in boot.<br>Leakage at cable/boot<br>interface. | | 22 | Not Bonded<br>Polyurethane<br>Unshielded<br>Preform | 8 | Leakage at cable/boot interface. | | 25 | Bonded<br>Polyurethane<br>Shielded<br>Scru-Lokt | 11 | Leakage at cable/boot interface. | | 13 | Bonded<br>Polyurethane<br>Unshielded<br>Oetiker | 11 | Leakage at cable/boot interface. | | 3 | Bonded<br>Neoprene<br>Shielded<br>No Clamp | 12 | Cable failed, leakage<br>through jacket. No<br>bond failure. | | 4 | Not Bonded<br>Neoprene<br>Shielded<br>No Clamp | 12 | Leakage at cable/boot interface. | TABLE 15A ALT CONNECTOR FAILURE ANALYSIS | CONNECTOR NO. | CONSTRUCTION | CYCLE | ANALYSIS | |---------------|-------------------------|--------------------|-----------------------------------------------------------------------| | 2 | Neoprene<br>one clamp | 1 | Manufacturing defect | | 29 | Polyurethane<br>control | 1 1 | Manufacturing defect | | 14 <br> | Polyurethane<br>control | 4 | Bond failure at sleeve | | 24 | Polyurethane<br>control | <br> 8 <br> <br> | Mechanical failure<br>cracked during<br>cold cycle due<br>to handling | | 13 | Polyurethane<br>control | 9 [ | Bond failure at cable | | 32 | Polyurethane<br>control | 111 | Bond failure at sleeve | | 26 <br> | Polyurethane<br>control | 18 | Bond failure at cable | | 9 | Neoprene<br>one clamp | 21 | Bond failure at cable | | 13 | Neoprene<br>one clamp | 21 | Bond failure at sleeve | | 3 | Polyurethane<br>control | 22 | Bond failure at sleeve | | 5 | Polyurethane<br>control | 22 | Mechanical failure,<br>boot cracked | | 19 | Polyurethane<br>control | 22 | Bond failure at<br>sleeve | | 8 | Neoprene<br>one clamp | 23 | Bond failure at<br>sleeve | TABLE 15B ALT CONNECTOR FAILURE ANALYSIS | , ———— | | 7 | <del></del> | |---------------|-------------------------|-------|----------------------------------| | CONNECTOR NO. | CONSTRUCTION | CYCLE | ANAL YS IS | | 7 | Polyurethane<br>control | 28 | Bond failure at sleeve | | 18 | Polyurethane<br>control | 29 | Bond failure at cable and sleeve | | 28 | Polyurethane<br>control | 29 | Bond failure at cable and sleeve | | 20 | Polyurethane<br>control | 29 | Bond failure at cable and sleeve | | 2 | Polyurethane<br>control | 31 | Bond failure at sleeve | | 4 | Polyurethane<br>control | 31 | Bond failure at sleeve | | 10 | Polyurethane<br>control | 31 | Bond failure at sleeve | | 8 | Polyurethane<br>control | 32 | Bond failure at sleeve | | 17 | Polyurethane<br>control | 32 | Bond failure at sleeve | TABLE 16 ALT FAILURE ANALYSIS SUMMARY | , | NUMBER OF | FAILURES | |-------------------------------------|------------------------|------------------| | ANALYSIS OF FAILUE. | UNCLAMPED POLYURETHANE | CLAMPED NEOPRENE | | Manufacturing Defect | 1 | 1 | | Mechanical Failure | 2 | 0 | | Bond Failure, Sleeve Only | 10 | 2 | | Bond Failure, Cable Only | 2 | 1 | | Bond Failure, Both Cable and Sleeve | 3 | 0 | | I TOTAL | 18 | <br> 4 | ### APPENDIX A TEST DATA FACTORIAL MATRIX TABLE 1 APPENDIX A FACTORIAL MATRIX RESISTANCE DATA | | CYC 12 | 2; | ! | | | × | | × | | | | | | 26 | 9 | WO: | 1 | | | | | | | 5.X | ! | × | | | | 2C | ! | 300% | ; | |--------------------|----------|---------------|--------|----------------------|----------|----------|------|------|--------|--------|------|-------|--------|------------|------|------|------|-----------------|------|-------|------|------|------|-------|------|-------|----|-------|------|---------------|----|-------------|------| | | PATH CY | 3 | ,17, | · U | מי | Ü | est. | Ü | æ | S | ρĵ | U | æ | J | ρΩ | Ú | en. | S | uc | J | m | S | ρC | ن | m | ပ | ÞΩ | U | m | U | m | U | æ | | | CYC :: P | 15 | į | | | X09 | 1 | \$0X | ł | | | | | 52 | i | 10% | ţ | | | | | | | 5M | 1 | U | U | | | 1.56 | ! | <b>200%</b> | 1 | | | CYC 10 | 2.7 | ; | | | 70% | ! | 50X | 9g | | | | | <u>5</u> 2 | : | 200K | ł | | | | | | | 2.4 | 300M | 1 | 96 | | | 1.56 | 1 | ₩009 | 1 | | | 6 DXD | 3 | j<br>k | | | 70% | : | 100% | 1 1 | × | | | | 2.56 | | 200K | 1 | × | | | | | | 3.4 | 1 | 1 | 1 | | | 1.56 | 1 | 2.56 | ł | | #<br>%<br># | رين ه | | <br> | | | >'<br>'~ | ! | FOC. | | 1. | Cont | × | | 5C | 8C | 2 | ! | Cont | Cont | | | | | 2% | 99 | 53 | 1 | | | 5: | | 22 | ; | | Resistance Reading | CY 2 7 | | ! | | | 55 | 1 | 5. | : | ; | 1 | × | | 56 | 1 1 | 56 | 1 | <b>&gt;</b> ્રે | | | | | | ¥006 | { | . 55 | 1 | | | Ξ, | 1 | 30 | } | | Resista | CYC 6 | 9 | | | | 56 | 1 | 90 | Ç, | | : | 300% | 300M | 5℃ | 1 | 23 | | 5.7 | 1 1 | × | | | | 3 | ; | } | 1 | | | 5: | ; | Ş | ! | | | CYC 5 | | 1 | × | | : | - | 26 | } | ł | | 800:1 | !<br>! | 23 | ; | 53 | } | 1 | } | Cort | Cont | | | 22 | } | } | 1 | × | | <u>.</u> : | ; | S | ; | | | CYC 4 | 9 | 55 | | Cont | 57 | 1.56 | 500k | 35. | 56 | 56 | } | ł | ¥009 | 95. | ¥004 | 1.56 | X18 | 56 | 2 | Cont | * | | 300% | 1.56 | 55 | ۶, | ¥); | Cont | ¥ | Ξ, | ۍ<br>ک | : 53 | | | CYC 3 ( | 1 | 1 | (Flooded | "0" ring | ; | | 51 | !<br>! | 1 | ! ! | 600K | Cont | - | 1 | 51 | 1 1 | N/T | E/N | چ | !! | Cont | Cont | \$00× | ! | ì | ! | 24 | Cont | \$70 <b>4</b> | £ | 55 | | | | CYC 2 | | | 2.5% | 1 | ; | 1 | 800% | ; | } | 3¢ | ļ | | XC09 | 300% | 500× | 16 | <b>3</b> C | 1.56 | 1.76 | 2C | 7.6 | 5. | S008 | K007 | - | ! | ¥009 | Cont | ¥)0y | 1 | 52 | 1 | | | CYC 1 | | | <b>5</b> C | - | ł | ! | 100% | ! | ! | - | - | ပ္ပ | ល្អ | ; | 2× | ! | 33 | : | 1 | 1 | 1 | ! | 300% | : | ; | | ł | 1 | 7.00K | ļ | 5,4 | : | | | PATH | U | æ | U | æ | O | வ | U | m | U | | | | U | മ | ပ | മ | U | ລາ | ပ | æ | U | ന | U | m | U | m? | ပ | æ | U | മാ | U | m | | | | 5-0-<br>10-0- | | :2<br>:2<br>:3<br>:4 | | N-6 | | N-1. | | 5~nd | | า~าส | | N-0 | | N-U | | 5-04 | | 25-23 | | N-G | | 0-N | | PU-C | | ภ-า.a | | <u>۷-</u> ۷ | | | | | | Edit | DSS-3 | | | | | | | | DS:1-3 | - | - | | | | | | 255-3 | | | | _ | | | | 2SC-3 | - | | - | | | - | | | | | c;; | Clamp | | | | | | | | | | | | | | | DETIKER | | ē | | | - | | - | | | | | | | | | | ٠. | 0 | | | C1 | | ٦ | | 7 | | v, | | ø | | r - | | σy | | σ٠ | | 0 | | : ; | | | | .3 | | :: | | | | ٧. | | PU = Polyurethane N = Neoprene C = Bonded T = Thbonded N/T = Not tested C = Cable 9 = Mack akell X = Persond from test Cont = Continuity measured \* --- = Resistance Greater than 10 Gigober of = Gigober Novolun X = Milohm X = Milohm TABLE 2 APPENDIX A FACTORIAL MATRIX RESISTANCE DATA Resistance Reading\* | C1 | | ;<br>i | ! | | X01 | { | ×/× | ; | X008 | | | | NOC'S | 1 | <b>&gt;</b> : | 1 | i er | : | | | 7.07 | 1 | 25 | ! | | | V. 6 | 1 | ; | ; | D | 1 | | | | | | | |---------------|------------|----------|---------|------|----------|-----|------------|-----|----------|------|----------|------------|----------------|--------|-----------------------------------------|-----|---------------|----------|------------|------|------|--------|--------|----|---------|-------------|------|-------|-----------|------------|----------------|-----|---------------------------------------|-------------|-----------------|-------------------------------------|-----------|--| | נידאק ני האין | | | 3 C | ່ຕ | : O | an: | 0 I/X | m | ن<br>ارد | , at | · U | ຕີ | . 55 | ,<br>, | · () | j. | . , | er<br>St | ( ) | ពា | ;; | ر<br>ج | 0 20 | n) | Ç | r | , | ar: | : t:<br>! | g gr | . Q | ec: | | | | | | | | 10 047 | 2 A | : 1 | | | | | N/T N/ | | | | | | 36 ∵ | | | | | | | | | | 20% 2. | | | | | | | | 57 | | | e e | | | | | | | 2- | | | | | | | | | | × | | | | | | | | | | | | | | | | | | | | 3.5 | | | orkerameno. | 9001609 | מייטיים<br>מאר מאר | trested | | | | 101 | | | | | | | | | | 150K | | | | | | | | | | | | | | × | | | | | | | | | | د<br>د د<br>د د | 6 5<br>1 • | 03. 1 1/3 | | | CYC 7 | 1 | | 200K | Cont | >:<br>00 | 1 | 1/1 | T/N | 30 | ; | <b>‰</b> | 1 | ō. | } | 36 | 1 | F. 22 | <u>F</u> | × | | 51 | 1 | 1.56 | 1 | 2 | Cont | 2. | 1 - 7 | 5: | ; | 14<br>10<br>24 | 1 | | | | 301700 | | | | CYC 6 | - | | | | - | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | , eng 0 | ACK DIFF. | Continuous reading | | | | CYC 5 | 58 | 1 | 1 | { | 8C | 1 | 2/2 | 1 | 1 | 1 | 1 | 1 | 1 | Ċ, | 32 | 1 1 | 1/2 | | 0000 | Cont | ! | } | 5. | ! | 35 | | ζ. | ς. | 55 | 1 | 20 | : | , , , , , , , , , , , , , , , , , , , | <br> | 2 2 | | | | | CYC 4 | 5 | | 2.56 | 1 | Ç | | $\Sigma/X$ | - | 96 | 1 | 50CM | - | <u>ن</u> | ! | Ç, | | Cont | 1 | Cont | Cont | Ů. | ! | 95 | 1 | 56 | 1 | 56 | 1 | Ċ, | 1 | ç - | { | ر | ) E | • >- | Cont | | | | CYC 3 | | | | | | | - | | - | | - | | | | | | | | | | | - | | | = | | | | | | | | # 40 0 p | | | | | | | CYC 2 | 100 | 5 | 57 | 1.56 | NGUS | 53 | 1.56 | 3G | 52 | 50 | 20 | 5 <u>c</u> | <b>^</b> 000 ∠ | 20 | ۲. | S | Cont | 1 | Cont | Cont | ۲۲ | S | 53 | 52 | <u></u> | <u></u> | Ž, | ·. | ž., | ::0 | | | whose of the real reality | : | | | | | | : CKC : | <u>ئ</u> ک | 1 | ύó | ; | ¥00<br>8 | { | 1 | ! | 96 | 1 | 99 | 1 | 1.55 | - | ξ <u>ς</u> | 1 | Cont | 1 | Cont | 000 | 5 | ! | 2.5 | 1 | 23 | ڻ<br>د<br>د | 30 | ! | S. | (° | 53 | Ç. | 7007 | | | | | | | HLV4 | 1 0-1.d | ~ | S | n. | 0 9-N | er. | O | u, | 5 5-14 | tr' | :-:: | Ωį | 0 0-X | e. | 0 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | u. | عنائ | e1 | ` .ii. | e: | N-6 | m | | ดา | 5 5-24 | r) | :-:: | С. | N-5 C | <b>c</b> . | 01 | a- | 9016.5.305 | | 4.000 | m.5. 7 | | | | 56.<br>X-1 | ١., | £ | | | | | | | £:SC | | | | | | | | 2304-It 288-3 | | | | | | | | 2SC-3 | - | | | | | | | f | • | • | - <b>S</b> 7<br>- <b>1</b><br>- 187 | | | | | 1 - Pare | ato, etc | <b></b> | | c | | ( · | | | | 64 | | C. | | :1<br>() | | 1,000 | 1.600 | <b>y</b> . | | , C4 | | o c i | | o, | | C) | | | | . 22 | | | | | | | | ### APPENDIX B ### TEST DATA ACCELERATED LIFE TEST Legend for the Following Tables Resistance in Gigohms except: -- = Resistance greater than 10 Gigohms M = Megohms K = Kilohms C = Continuity measured X = Removed from test N/R = Not read ### Path Notation: C = Cable bond B = Backshell bond TABLE 1 ALT SUMMARY - NEOPRENE CONNECTORS | No. | Path | CYC 1 | 2 | 3 | 7 | 5 | 9 | 7 | 80 | 6 | 10 | 11 | 12 | |----------|------------|---------------|--------------|--------|--------------|----------|-------------------|-------|------|---------|---------|--------|------------| | - | ပ | 9 | 700M | 400M | W009 | 300M | 300M | 200M | 200M | 100M | 100M | M06 | 70M | | | <b>ACI</b> | N/R | ٥, | 10M | 500M | 1 | | | - | | | | 7 | | 2 | ပေန | ×× | | | | | | | | | | | | | • | <u>α</u> | <u> </u> | | | | | - | =/:: | ;;;; | | 1:0, | | | | m | ပ | ~ | 150M | 200M | 400M | W09 | ! | N/R | 15M | NOI . | HOI | MOI | Σ<br>50 | | | <b>~</b> | -<br>! | S | ₩009 | - | - | ! | 1 | ; | ! | ! | - | —<br>რ | | 7 | ပ | <u>_</u><br>س | Σ | | - | 200M | 50M | J SM | 20M | - W9 | Σ | - K7 | 3 <u>w</u> | | | æ | <u>-</u> | 9 | 9 | - | - | <u> </u> | 1 | 7 | - | - | - | 7 | | 2 | ပ | _<br>_<br>_ | 150M | 7 | 800M | 500M | 300M | 250M | 300M | 200M | 250M | 30M | 30M | | | æ | _<br>-<br>- | 2 | 15M | -<br> | - | ! | - | 1 | ! | 1.5 | - | - | | 9 | ပ | 20M | 3M | M008 | 800M | 200M | 150M | 100M | 100M | 70M | 65M | M09 | N/R | | | æ | - | 2 | 2M | 2 | | - | - | - | - | | _<br>¦ | _<br>9 | | 7 | ပ | _<br> | 3M | 150M | 7 OM | 30M | 20M | 15M | 15M | 10M | —<br>Ж6 | 5M | - W | | | æ | -<br>-<br>- | 2 | 100M | - | - | - | | | - | N/R | - | 2 | | <b>∞</b> | ပ | _<br> | - | -<br>- | - | M009 | 500M | 500M | 400M | 300M | 300M | 300M | 200M | | | æ | _<br> - | 9 | 700M | - | N/R | - | - | - | 150M | N/R | N/R | <u>ო</u> | | 6 | ပ | _<br> | - | _<br> | | 300M | 30M | 10M | 10M | —<br>Ж6 | 8W | 8W | 10M | | | മ | -<br> <br> - | 7 | ! | <u> </u> | - | - | 1 | 7 | | - | - | 2 | | 10 | ပ | 3 | 5M | 800M | - 1 | 200M | 150M | 150M | 100M | M06 | 80M | 7.5M | ₩09 | | | æ | -<br>- | 7 | 200M | <del>-</del> | 1 | - | - | - | - | - | - | - | | 11 | ပ | <br>E | 7 | M007 | | 800M | 1 | 1 | _ | 700M | 500M | 250M | 150M | | | œ | <u>-</u> | <del>د</del> | _ 70M | - | - | - | - | ! | - | ! | - | - | | 12 | ပ | 3 | 3M | 30M | | 800M | 700M | 700M | 700M | M009 | 700M | _ | 500M | | | <b>£</b> | <u> </u> | 7 | 150M | <br>! | <u> </u> | 1 | - | - | - | - | ; | - | | 13 | ပ | _<br> | 2M | 200M | - | 800M | 700M | 200M | 300M | 150M | 100M | - W09 | 60K | | | <b>m</b> | _<br> - | က | N/R | _<br>¦ | - | N/R | - | - | - | - | N/R | ပ | | 14 | U | _<br> | - | | WO09 | 200M | 100M | 80M | 70M | 50M | 40M | 30M | 20M | | | മ | -<br> <br> - | 2 | - | | | - | - | 1 | - | | - | - | | 15 | ບ | 3 | | 800M | _ | 700M | 700M | 7.00M | M009 | 500M | 400M | 300M | 300M | | | œ | _<br> <br> - | 9 | 100M | _<br> <br> - | - | <del>-</del><br>۳ | - | ! | - | ! | - | - | | 16 | S | N/R | W009 | 1 700M | - | W009 | 500M | 800M | - | 700M | M009 | - | 500M | | | æ | N/R | 3 | 500M | 1 | - | - | - | - | - | - | - | 1,4 | TABLE 2 ALT SUMMARY - NEOPRENE CONNECTORS | | - | M009 | 700M | 400M | 400M | S00M | 500M | 500M | 500M | 400M | 500M | |----------|---------------|------|----------------------------------------------|------------|---------|--------|------|--------|------|--------|------------| | ı | 7 - | 800M | SM | _ | JM<br>L | | 7 | 8M | 100M | - | ; | | | | _ | - | : | 300M | 200M | M09 | 400M | 100M | 20M | 250M | | ! | 2 | 2 | N/R | 10M | - | - | 100M | - | 10M | - | 1 | | | | 1 | 1 | WU09 | 400M | 200M | 300M | 400M | 200M | 200M | 200M | | ! | - 5 | 1 | - | ! | ! | ! | 500M | - MS | - | _<br>_ | 1 | | | 600M | 600M | 400K | 300M | 150M | 100M | W09 | W009 | 50M | 30M | 30M | | ! | 2 | 2 | 10M | 200M | 300M | _<br>¦ | - | 3M | 15M | 1.5 | 20M | | ! | _<br> | - | 300M | 150M | 150M | 150M | 150M | 50M | 1M | 1M | 30M | | ! | 7 | 3 | 7M | - | - | - | 3M | 400M | 2M | ! | 1M | | <u> </u> | 800M | 800M | 300M | 700M | 700M | 300M | 300M | 250M | 100M | ₩08 | 70M | | - | -<br>.c | 200M | N/R | 1 | 2M | ! | - | 200M | H09 | - | 70M | | ļ | | 500M | 20M | ΣW | - W.5 | 10M | 1.5M | lM<br> | SM | 600K | 1M | | ; | 7 7 | 1 | 15M | 10M | 10% | - | 300M | 3M | - | _<br>U | 700M | | 2 | 900M | 1 | 1 | 1 | 200M | 100M | 500M | 500M | 300M | 200M | M06 | | N/R | 3 | - | M07 | - | 200M | _ | 1.5M | 20M | 1 | - | 80M | | 2 | 500M | 400M | 500M | 300M | 150M | 150M | 100M | 90M | 65M | 50M | <b>W07</b> | | 1 | 3 | - | 100M | 10M | 1.5 | | 300M | _ | 100M | 2 | ł | | 2 | 400M | 500M | M009 | Z00M | W06 | 100M | 80M | 100M | M09 | 20M | S0M | | ! | <u>-</u><br>۳ | 1 | | 1.9<br>1.9 | | - | _ | - | 40M | - | 2 | | 2 | 500M | 700M | 800M | 200M | 100M | 40M | H09 | 65M | 70M | 50M | 40M | | 2 | 7 | 1 | 2 | - | - | - | - | - | - | 200M | - | | ! | 1 2 | _ | - 1 | R00M | _ | 800M | _ | 1.5 | 1.5 | 1.5 | 1.5 | | ! | - 5 | 100H | - | _<br>ပ | - | - | ! | 2 | | 500M | 500M | | ! | | 800M | 1 | 700M | 400M | 300m | 150M | 100M | 80M | 70M | 10M | | 1 | 3 | 5.M | 20M | 30M | 2 | 1 | ٣ | - | - | 700M | 800M | | 1 | 1 600M | 700M | 800M | 100M | 70M | 80M | 40M | 30M | 20M | 20m | 20M | | ! | 7 | 50× | 300% | ! | 2 | N/R | 50M | 2011 | 10M | - | 1 | | 1 | | 7001 | 20M | 300M | 100M | 200M | 70M | 70M | S0M | 40M | ΣW | | 1 | 7 | 1 | <u>. </u> | E. | N/R | | 200M | - | 7 | - | ļ | | 1 | 1 50% | 10.4 | 3 | 2 | 1.5 | 2 | 2 | 2 | 2 | 1.5 | 20M | | 7 | - 5 | K/R | 150% | 400% | 7 | 1 | - | - | | | 2 | TABLE 3 ALT SUMMARY - NEOPRENE CONNECTORS Resistance Readings | No. | Path | CYC 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |-----|------------|---------------|------|------------------|---------|-------------|--------------|----------|--------|------------------|--------------|-------------------| | | U | <br>30M | 50M | | 30M | 30M | 20M | 15M | 15M | 20M | - W07 | 30M | | | ĸ | 1 | 700M | 40M | + | - | - | 700M | - | - | 1 | - | | 7 | U i | | | | | | | | | | | | | • | <b>x</b> ( | <br> -<br> - | , | | | 1 | | 1 2/ :: | 2/:: | 1 | 1 | | | m | ပ | Ψ.<br>Ε | Σ | - W | - M4 | Σ. | | N/R | N/R | N/R | Σ<br>X | <del>-</del> - | | | æ | _<br> <br> - | - | _<br> | 2 | 4 | - | 100K | 80M | - | 30M | H<br>H | | 4 | ပ | - 3M | 2W | - SM | 10M | 4 M | N/R | N/R | N/R | SM<br>S | | SM | | | æ | -<br>-<br>- | | 1.5 | - | 3 | - | ပ | 100K | - | 1.5 | 2 | | 2 | ပ | — W5 — | 2M | - 5M | 150M | 5M | SM | 500K | 400K | 5M | 5M | 5M | | | Ø | _<br> -<br> - | 700M | 1.5 | - | - | _<br>ს | _<br>ပ | 1M | ; | | 400M | | 9 | ပ | 15M | 50M | SOM | 20M | 40M | 30M | 1M | 1M | 25M | 30M | N/R | | | <b>6</b> | _<br>-<br>- | - | 200M | - | 2 | - | ပ | 10K | - | 500M | 2 | | 7 | ပ | 10M | М6 | - W6 | 70M | - W6 | 10M | 100K | 1M | 10M | 10M | 60K | | | Ø | | | 1.5 | IM<br>— | N/R | 100M | <u>ں</u> | 1M | 300M | 15M ( | <del>-</del><br>ن | | œ | ပ | 200M | 150M | 100M | 150M | 100M | 100M | 80M | 100M | 500M | - W007 | 80M | | | 29 | <u> </u> | - | 2 | 500M | N/R | <del>-</del> | ပ | 100K | _ W <sub>7</sub> | 5M | 8 | | 6 | ပ | | W6 | _<br> | _<br>U | 1M | 8M | 200K | H. | <u>۔</u><br>ں | × | | | | æ | - N/R - | 750M | 7 | - | - | - | 100K | 70M | - | × | | | 10 | ပ | ₩09 | 70M | 65M | 70M | 70M | - W9 | - | ]<br>M | -<br>W09 | ) W. | W09 | | | 82 | -<br> <br> - | 800M | - 5 <del>X</del> | 700M | - | 7 | _<br>ပ | 200M | - | 10M | - | | 11 | ပ | 150M | 7.5M | 15M | 100M | 80M | 50M | J.W | ]M | 20M | 20M | 50M | | | æ | -<br>-<br>- | 850M | - 3M | 2 | - | - | ပ | 300M | - | _ | <u>'</u> | | 12 | ပ | _<br>_<br>_ | 500M | 550M | | 7 | | 2M | 50M | 1.5 | M009 | 1.5 | | | æ | -<br>-<br>- | H | 1.5 | - | <del></del> | - | 70K | 2M | - | 2 | <u> </u> | | 13 | ပ | 200K | 10M | M07 | 15M | 200K | 20M | 100K | 100K | 80K | X | | | | 89 | N/R | ပ | ပ | - | v | 7 | 100K | 1.5M | _<br>o | _<br>× | | | 14 | U | 15M | 25M | 25M | 20M | 25M | 5M | 500K | 1M | 10M | 25M | 25M | | | æ | -<br>-<br>- | M006 | | - | - | 10M | 80K | - | - | | - | | 15 | ပ | F0004 | 200M | 350M | 40M | 400M | 200M | 300M | 200M | 300M | 200M | 300M | | | Д | | 800M | S00M | - | 1 | - | N/R | - | - | <del>-</del> | <del></del> | | 16 | ပ | 1 700M | 500M | 300M | _ | - | 800M | ر<br>د | ပ | _ | 150M | <u> </u> | | | æ | - | 1 | 1.5 | - | 10M | - | ٥ | 10M | 50M | 2M | 2 | TABLE 4 ALT SUMMARY - NEOPRENE CONNECTORS Resistance Readings | 23 | 5M | ; | 70M | ; | ΙM | 10M | 1M | 1 | lМ | 700M | 10M | 3 | IM | 2 | 100M | ; | SM | } | JM | 7 | 30M | 10M | 500M | IM | 10M | ; | 5M | <b>4</b> M | 10M | N/R | 7 | 100K | |--------|------|------------|----------|--------------|------|--------|-----|------------|------|----------|-------|----------------|-------|----------|------|------|-----|--------|------|-------------|-------|------|------|--------|------|------------|---------|------------|-----|------------|-------------|----------| | 22 | 400M | ပ | 100M | <b>М</b> 9 | 150M | <br>W6 | 20M | 800M | J.W | 30M | M07 | 5M | 1.5M | ပ | 150M | 150M | Z0M | 10M | 80M | 700M | - | 30M | W009 | 50M | M04 | 150M | 20M | 50K | 40M | 40M | W009 | 1M | | 21 | 10M | 100M | N/R | 20M | 10M | 30M | 1M | - | I.M | 7 | 10M | 1.5M | IM | 1<br>H | 50M | 10M | I.M | - | 30M | 700M | 50M | - | 800M | 100K | II. | 80M | 25M | 500M | 30M | 2 | N/R | - <br> - | | 20 | 50M | - | N/R | 5M | 1.5M | 1M | 1M | 2M | 100K | 800M | 30M | 200M | 1.5M | 100K | 40M | ပ | 1M | U<br>U | 30M | 800M | 40M | 300M | _ | _ | 20M | 500M | 20M | - | 10M | 1 | N/R | 100K | | 19 | 100M | 10M | N/R | W 7 | 10M | ပ<br>ပ | 20M | 15M | 1M | 70M | 20M | 20M | 1.5M | <u></u> | 150M | 100M | 20M | 500M | SOM | 3M | W09 | 80M | 1.5 | 50M | 40M | 25M | 15M | 10M | W09 | 70M | N/R | U | | 18 | 200M | 5 | 50M | 7 | 50M | - | 1M | 5 | 1M | 800M | 70M | 300M | 2M | 30M | 30M | Z0M | 10M | 20M | 1.5M | 100K | 100M | 2M | _ | 100M | 40M | 70M | 20M | | 10M | 30M | N/R | ! | | 17 | 700M | SOM | 150M | 20M | 200M | 20M | 25M | 70M | 1.5M | 500M | 50M | 1 W0 7 | 1.5M | _<br>o | Z00M | 400M | 30M | 10M | 50M | 10 OM | ₩09 | 20M | 2 | 300M | ₩09 | 200M | 50M | 150M | 50M | - M09 | N/R | 100K | | 16 | 100M | 2 | 50M | - | 70M | - | 10M | 70M | 10M | 100M | 50M | 100M | 1M | 500M | 70M | 3 | 50M | - | 20M | } | 100M | - | - | 2 | 114 | - | 20M | 1.5M | 15M | - | 70M | 30M | | 15 | | S | <u>~</u> | s | L | ы | Σ | _ | Σ | _<br> | | z | _ T _ | V | | z | A I | z | ပ | ы | _ | z | 0 | _ | ~ | <u>ы</u> | _<br> | _<br>_ | | z | _<br>5<br>_ | S | | 14 | 400M | 20M | 12 5M | 150M | 125M | _ | 25M | 7 | 1M | 2 | M09 | 5 <sub>M</sub> | 1M | 7 | 100M | 2 | i | - | 500M | 40M | W09 | 10M | 800M | 500M | 350K | ပ | 50M | 2 | 50M | 150M | M006 | 2 | | CYC 13 | 400M | - ! | 500M | _<br> <br> - | 100M | _<br>¦ | 20M | 2 | 10M | 200M | - 50M | 150M | 1 1M | 100M | 100M | 10M | 1M | N/R | 50M | _<br>¦<br>_ | 1 20M | | - 1 | _<br>: | 20M | N/R | 20M | <u>-</u> | 30M | <u> </u> | 100M | - | | Path | ပ | <b>2</b> 0 | ပ | <b>~</b> | ပ | 20 | ပ | <b>2</b> 2 | ပ | <b>8</b> | ပ | <b>£</b> | ပ | <b>~</b> | ပ | 8 | ပ | 20 | ပ | <b>8</b> 2 | U | æ | ပ | 8 | ပ | <b>2</b> 0 | <u></u> | æ | ပ | <b>6</b> 0 | U | В | | No. | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 54 | | 25 | | 97 | | 27 | | 28 | | 59 | | 30 | | 31 | | 32 | | TABLE 5 ALT SUMMARY - NEOPRENE CONNECTORS | No. | Path | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | |--------------|----------|--------------|-----------|--------------|------|--------|--------|-------------------|------|----------| | - | ပ | 40W | 50M | 100M | 30MM | 10MM | 5M | 30M | 100M | 35M | | | £ | - | 5 | | - | | - | 1M | | - | | 7 | ပေထ | | | | | | _ | | | | | ٣ | ء<br>د | - | 8M | SOM | 8M | 5M | 1M | . Ж9 | 20M | - | | | Ø | - | 1 | 1 | - | - | - | - | 2 | - | | 4 | υ | N/R | N/R | 10M | 5 | 10M | 100M | 70M | 100M | - | | | æ | _<br>¦<br>_ | 70M | _<br> <br> - | - | 70M | 100M | 2 | - | 9 | | 2 | ပ | _<br> <br> - | N/R | _ IM | Ψ. | 3M | 1M | 2M | IM | 3M | | | æ | _<br> | 500K | _<br> - | 400K | _<br>¦ | - | 20M | - | | | 9 | ပ | 50M | 40M | 100M | 40M | 40M | 40M | 80M | 100M | 150M | | | æ | _<br> <br> - | 100M | | - | - | - | 800M | 25M | - | | 7 | ပ | 10M | 100K | | 50M | 30M | 20M | 20M | 20M | N/R | | | æ | ပ | ပ | 800M | - | - | - | 2 | - | 20M | | <b>&amp;</b> | ပ | 100M | 10M | 10M | 5 | 5M | 3M | 1M | 200K | ပ | | | æ | - | 50M | - | 700M | 1M | 40M | - | 1M | ပ | | 6 | ပ | | | | | _ | | | | | | | <b>£</b> | | —<br>! | | | | | _ | | | | 10 | ပ | 55M | 50M | 5M | S0M | 1M | 2M | 100M | 300M | 40M | | | <b>6</b> | 30M | 500M | 30M | - | 30M | 5 | - | 800M | | | 11 | ပ | 3 | N/R | | 100M | 20M | N/R | 10M | 500M | 70M | | | m | 1 | <b>7.</b> | <u> </u> | ! | - | —<br>ღ | 10M | - | 1 | | 12 | ပ | 1.5 | 1.5 | | 2 | 800M | - | _ | 10M | 7 | | | œ | -<br>- | | N/R | | | | 10M | 30M | <u>-</u> | | 13 | ပ | | | | | | | | | | | | മ | | | | | | | | - | | | 14 | ပ | 25M | 30M | 1M | 25M | 10M | SM. | 500M | | <u></u> | | | <b>£</b> | _<br>¦ | - | 100M | - | 80M | - | 100K | - | 1 | | 15 | ပ | 200M | 200M | 200M | 150M | 150M | 70M | 50M | 80M | 150M | | | <b>~</b> | _<br> <br> - | —<br>∞ | _<br>¦_ | - | 7M | N/R | <del>-</del><br>ن | - | -<br>¦ | | 16 | ပ | N/R | N/R | 100M | | 700M | 500M | _ | 1.5 | 9 | | | 20 | - | ΣĮ | - | 1 | 100M | | 30M | - | S00M | TABLE 6 ALT SUMMARY - NEOPRENE CONNECTORS Resistance Readings | ć | 32 | W009 | - | 100M | <b>200M</b> | 3М | W09 | W09 | ! | 1M | ∞ | 40M | 1 | 2M | 2 | 3М | 15M | 20M | 7- | M06 | 20M | 15M | 100M | 500M | 200M | 70M | - | 40M | 1 | 30M | : | 100K | 1 | |----|------|------|-------------|------|--------------|----------|----------|---------|------|------|---------|------|----------|------|------|-------|--------|-----|------|------|------|---------|---------------|------|------|------|------|-------|----------|------|--------------|------|------| | ć | 31 | 80M | ပ | 30M | ! | 2M | <u>'</u> | -<br>2M | _ | JM | 30M | 40M | ; | 1M | - | 2M | 2 | 10M | 1M | 150M | 80M | SM | - | 2M | 30M | 20M | _ | 100M | - | 20M | - | 2M | 100M | | ć | 20 | 100M | - | 50M | - | 1M | _<br>¦ | 10M | 2M | 2M | 20M | 50M | - | 1M | 100M | 1M | - | 20M | - | 10M | 200M | 2M | 700M | 100M | 1 | 2 | 800M | 20M ] | 50M | 50M | 1 | 300M | - | | 9 | 67 | 90M | 2M | 50K | - | 1M | 5M | 5M | - | 1M | 5 | 70M | - | 1M | 10M | 100K | I.M | 5M | ! | 5M | 300K | 1M | _ | 70M | - | 10M | - | 3M | 1M | 1M | - | 100M | 3 | | ć | 87 | 100M | - | 100K | 2M | 1M | <u> </u> | SM | ! | 1M | 2 | 100M | | 1M | 5 | 1M | 10M | 1M | - | 3M | - | 2M | 80M | 50M | 100K | 70M | - | 15M | 700M | 1 M | | 200M | - | | ŗ | /7 | 70M | 3M | 50M | 1M | 2M | 10M | 1.5M | 1м | 3M | 2M | 100M | - | 1M | - | 5M | 2 | 1M | - | 10M | 10M | 8w | _ | 40M | 30M | 50M | 100K | 50M | 2 | 80M | 700M | 400M | 600M | | ò | 97 | 100M | _<br>_<br>_ | 30M | _<br>¦ | SM<br>SM | 80M | - 3M | 100M | 1M | 100M | 50M | 10M | 3M - | 2 | _ 50M | _<br>¦ | | 5 | 1M | 300M | IM<br>— | ၂ | 500M | 700M | 50M | | S0M | <u>-</u> | 100M | _ 50M | 1.5 | 150M | | i. | 67 | M009 | 10M | 150M | 30M | 200M | N/R | 20M | 15M | 1.5M | 300K | S0M | 3M | 1.5M | 80M | 100M | 20M | 20M | 1.5 | 100M | - | 70M | 10M | 800M | 2 | 500M | ပ | 50M | 10M | 1 | 15M | - | - | | ð | 74 | 10M | - | 30M | _<br> <br> - | 2M | _<br>¦ | SM | | 1M | _<br> - | 20M | <u>'</u> | 1M | - | 30M | 1M | 1M | 200M | - SM | - 5 | 30M | <u>-</u><br>¦ | 100M | 30M | | 100K | 20M | 2M | 20M | _<br> <br> - | 800M | SOM | | • | Path | ပ | В | ပ | 血 | ပ | 8 | ပ | 2 | ပ | æ | ပ | 8 | U | æ | ပ | 89 | ပ | В | ပ | 83 | ပ | В | ပ | В | ပ | В | ပ | 23 | ပ | 2 | ပ | 85 | | ; | No. | 17 | | 18 | | 19 | | 20 | | 21 | | 22 | | 23 | | 24 | | 2.5 | | 56 | | 27 | | 28 | | 29 | | 30 | | 31 | | 32 | | TABLE 7 ALT SUMMARY - POLYURETHANE CONNECTORS | No. | Path | CYC 1 | 2 | 3 | 4 | 2 | 9 | 7 | 80 | 6 | 10 | 11 | 12 | |-----|----------|--------------|-----------|--------------|--------------|--------|--------------|--------|------|--------------|-------------|----------|-------------| | - | υ | | ٧. | 2 | 800M | | | | | M009 | 300M | 15M | S00M | | | 'n | _<br> - | ٠, | - | 9 | - | 200M | 2 | - | 4 | 9 | U | 1 | | 7 | ပ | _<br>: | 300M | 500M | 400M | 300M | 200M | 200M | 150M | 150M | 100M | 70M | N/R | | | æ | _<br> - | • | 700M | | - | - | 7 | 2 | 2 | 200M | 40M | 1 | | က | ပ | _<br> | 4 | 400M | M009 | 700M | 700M | ₩009 | W009 | 500M | <b>W009</b> | W009 | <b>200M</b> | | | æ | _<br> - | <b>∞</b> | _<br> <br> - | | 1 | - | - | - | 2 | - | 0 | 1 | | 4 | ပ | _<br> <br> - | 4 | 1.5 | ₩008 | 1.5 | _ | 800M | 1 | 700M | 800M | 1.5M | <b>200M</b> | | | æ | - | m | _<br>¦<br>_ | | - | 7 | - | 5 | <del>-</del> | - | Н9 | 1 | | 2 | ပ | - | ന | 2 | 800M | 1.5 | - | ₩008 | | W009 | 700M | W009 | 400M | | | <b>£</b> | _<br> <br> - | 7 | 10M | <del>-</del> | - | <del>-</del> | - | - | 5 | - | H009 | 1 | | 9 | υ | _<br> | 4 | 2 | ₩009 | 700M | 200M | 700M | 700M | 400M | 500M | 200M | <b>200M</b> | | | m | _<br> - | 9 | 2M | -1 | - | N/R | - | - | <del>-</del> | - | - | } | | 7 | υ | _<br> | ษ | - 3 | 800M | 7 | 300M | 1.5 | 2 | | _ | 40M | <b>700M</b> | | | m | _<br> - | 5 | - | | - | 10M | | - | 4 | N/R | _<br>ს | ; | | တ | Ü | _<br>-<br>- | à | 7 | 700M | 7 | | | 1.5 | 700M | _ | 200M | 100M | | | m | <br>: | m | _<br>¦<br>_ | - | ; | - | - | - | 1.5 | - | ပ | 1 | | 6 | ပ | _<br> <br> - | 4 | 2 | 800M | 80M | 1.5 | 1.5 | | 700M | | Эж<br>— | 400M | | | Ø | _<br>¦ | 4 | | 1 | - | 300M | - | - | _<br>ს | - | U<br>U | ; | | 10 | ပ | - | <b>ار</b> | 200M | 800M | 1.5 | _ | | 1.5 | 700M | 400M | 200M | 40M | | | æ | <br> - | 4 | _<br> <br>_ | 1 | - | 7 | 1.5 | - | 30M | 2 | - | 1 | | 11 | ပ | _<br> <br> - | 5 | - 5 | 800M | 1.5 | 1.5 | _ | 1.5 | 700M | _ | 800M | 700M | | | m | - | 4 | _<br>¦ | - | - | ; | - | - | 7 | - | - | 1 | | 12 | ບ | <br> <br> - | 4 | 2 | 800M | 1.5 | 1.5 | _ | _ | M008 | - | 800M | 800M | | | <b>m</b> | _<br> - | m | _ | _ | - | N/R | - | - | 300M | - | 5M | 1 | | 13 | ပ | <br> <br> - | 4 | - 2 | 800M | 1.5 | 1 | - | 1.5 | U | × | | | | | m | | 7 | 15M | 1 | - | 10M | -<br>i | - | _<br>U | × | | | | 14 | ပ | - | 4 | 1.5 | 600M | 20M | × | | | | | | | | | æ | - | 9 | _<br> <br> - | <u>_</u> | _<br>ს | × | | | | | | | | 15 | ပ | _<br>: | m | 300M | 200M | 300M | Z00M | 150M | Z00M | 150M | 150M | SM<br>MS | W7 | | | Ø | _<br> <br> - | ပ | 300M | <del>-</del> | W009 | N/R | 1 | M009 | 2 | - | _<br>ပ | ပ | | 16 | ပ | _<br> <br> - | 4 | _ | 800M | 2 | 300M | S00M | W009 | 250M | 400M | 300M | 200M | | | æ | - | 6 | - | 1 | Z00M | 100M | - | 5 | - | - | - | 1 | TABLE 8 ALT SUMMARY - POLYURETHANE CONNECTORS | 17 | No. | Path | CYC 1 | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|-------------|------|--------|------|----------|-------------|------|------------------|-------|-------|-------------|------------------| | B 1 15M 10M 200M 100K 3 C 2.5 1 800M 500M 400M 400M 400M 300M 300M B | 17 | υ | | ≺† | 1 300M | 100M | W009 | 10M | 150M | 50M | 10M | 40M | 20M | 30M | | C 3 1 1000H 90t 600M 40M 40M 40M 20M 25 1 C | | മ | | à | | 1 | 15M | 10M | - | 200M | 100k | 3 | 3M | 5 | | B | 18 | ပ | 3 | - | 100M | 90M | W009 | 40M | 40M | 30M | 25M | N/R | 15M | 2м | | C 2.5 1 800M 500M 400M 400M 400M 300M 300M 300M 600M 600M 1 1 600M 400M 500M 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | æ | <br> <br>_ | 2 | 7 | - 1 | - | - | - | - | 2 | | | 80k | | B 5 C 5 C 4 2 700M 1 1 600M 400M 500M B 4 2.5 800M 1.5 1 600M 1 C 4 2.5 800M 1.5 1 600M 1 C 4 2.5 800M 1.5 1 600M 1 C 4 2.5 800M 1 1 600M 1 C 4 2.8 800M 1 1 1 600M 1 C 4 2.8 800M 1 1 600M 1 1 600M 1 1 1 600M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 19 | υ | | 2.5 | 1 1 | 800M | 500M | 400M | 400M | 400M | 300M | 300M | 300M | 400M | | C | | <b>2</b> 2 | <br>! | 5 | | 1 | - | - | ! | - | <br>U | 5 | 300M | ! | | B 6 1 200M 50M 1 1 500M 1 C 4 2.5 800M 1.5 1 1 500M 1 B 4 2 800M 7 1 1 600M 1 600M 1 1 1 600M 1 1 1 600M 1 1 800M N/R | 20 | ပ | | 7 | 2 | 700M | | | _ | W009 | 400M | ₩005 | 400M | 500M | | C 4 2.5 800M 1.5 1 1.5 1 1 500M 1 1.5 4 | | æ | ! | 9 | - | 1 ! | 200M | 50M | 1 | | 30M | N/R | 500M | 1 | | B 4 2 800M 7 1 1 1 600M 800M C 4 2 800M 7 1 1 1 600M 800M C 4 1 1 1 600M 1 1 600M 1 1 1 600M 1 1 1 600M 1 1 1 1 600M 1 1 1 600M 1 1 1 1 1 600M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1< | 21 | U | - | 7 | 2.5 | 800M | 5.5 | - 1 | 1.5 | | 500M | | N/R | N/R | | C 4 1 1 1 1 1 600M 800M | | æ | | j | 100M | 1 | 1 | - | - | ΣI | 1.5 | 7 | N/R | 1 | | B 4 1M 2 5 1 6 1M 1 6 1M 1 1 M/R N/R | 22 | U | | 4 | c1 | 800M | 7 | 7 | | _ | W009 | M()U8 | <b>W009</b> | 700M | | C R N/R N/R N/R N/R N/R N/R N/R N/R N/R N | | <b>£</b> | 1 | ৵ | 1.14 | F-4 | 5 | | 1 | 9 | Σ. | 1 | 7 | ; | | B 3 1 600M 1 1 800M X C 3 1 600M 1 1 800M X C 1 0 50M 100M 800M N/R C 2 1.5 600M 1 1 2 N/R C 2 7 700M 1.5 1.5 1 1 C 4 1 30M 1K 1M C 4 4 700M 1.5 1.5 2 1 600M 1 C 1 1 1 1 2 1 2 1 1 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <th>23</th> <th>ن</th> <th>1</th> <th>Œ</th> <th>N/8</th> <th>N/R</th> <th>3/N</th> <th>N/R</th> <th>N/R</th> <th>N/R</th> <th>N/R</th> <th>N/K</th> <th>N/R</th> <th>X/R</th> | 23 | ن | 1 | Œ | N/8 | N/R | 3/N | N/R | N/R | N/R | N/R | N/K | N/R | X/R | | C 3 1 1 600M 1 1 800M X B 2 1.5 600M 600M 1 1 2 500M 50M 1/E C 2 2.5 2.5 700M 1 1 2 500M 1 1 C 4 4 4 700M 1.5 1 2 500M 1 1 C 4 4 4 700M 1.5 1 2 500M 1 1 C 3 1.5 1 3 2 1 C 3 1.5 1 3 2 1 C 500M 10M 5 C 500M 10M 5 C 1.5 1 3 2 1 2 1 2 1 C 1.5 1 500M 1 1 3 2 1 C 1.5 1 5 5 1 5 1 5 1 C 1.5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | | æ | 1 | ~ | - | | SOM | 10% | | 15M | 20% | N/P | 10M | <b>!</b> | | 8 3 1 C 700M X 5 C 2 1.5 600M 600M 600M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 2 1 2 2 2 2 2< | 24 | U | <u> </u> | ω | | W009 | | | 800M | × | | | | | | 5 C 2 1.5 600M 50M 100M 800M 50M N/E 6 C 3 6 1 1 2 50M 1 7 C 4 4 700M 1.5 1.5 2 7 7 30M 8 1 2 7 7 30M 2 7 7 30M 2 7 7 30M 2 7 7 30M 2 7 7 30M 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | æ | 1 1 | 3 | | 1 | _<br>ن | 700M | - | × | | | | | | 6 C 2.5 2.5 700% 1 1 2 50% 500% 1 1 | | ن | | C-1 | 1.5 | W009 | \$00¢ | 30% | 100M | ₩008 | 50M | N/1 | 7 W 7 | 200M | | 6 C 2.5 2.5 700M 1 1 2 50M 500M 1 7 C 4 4 700M 1.5 1.5 2 7M 30M 8 C 4 4 700M 1.5 1.5 2 7M 30M 1.5 8 C 1 1 1 00M 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | | æ | | 3 | 9 | | 1 | 30 <u>×</u> | 1 | ×: | Σ. | 1 | ۔<br>د | j<br>I | | 7 C 4 4 700M 1.5 1.5 2 7M 30M 500M 1 1 | 56 | U | 1 | 2.5 | 2.5 | 700× | p=1 | | 7 | 50M | 500% | | 5.K | <del>2</del> 009 | | 7 C 4 4 700M 1.5 1.5 1.5 1 500M 10M 1 8 C 3 1.5 1 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 3 2 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <th></th> <th>മ</th> <th>1</th> <th>à</th> <th>-</th> <th>-</th> <th>!</th> <th>1</th> <th>-</th> <th>7.4</th> <th>30M</th> <th>1</th> <th>O</th> <th>7</th> | | മ | 1 | à | - | - | ! | 1 | - | 7.4 | 30M | 1 | O | 7 | | 8 C 3 1 100M 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 3 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3< | 27 | U | | 7 | 7 | 700M | 5.1 | .5 | C1 | - | W009 | - t | 500w | N/R | | 8 C 3 1.5 1 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | æ | 1 | ٣ | 1 | | i | 100M | - | 500M | 1 OM | 5 | U | Ç | | 9 C C C X<br>B C X<br>0 C 1.5 1.5 600M 600M 1 800M 600M 500M N/R | 28 | υ | 1 | 3 | 1.5 | | 3 | 2 | | 2 | _ | 2 | 800M | 1.5 | | 9 C C C X<br>B C X<br>0 C 1.5 1.5 600M 600M 1 800M 600M 500M N/R | | <b>£</b> | - | 7 | 100M | | <u>-</u> | | | | 200M | 20M | 10M | N/R | | 1.5 1.5 600M 600M 1 800M 600M 500M N/R 2 1 1.5 C 500M N/R 3 2 700M 1 C 100M N/R N/R 3 200M 1 C 100M 10M 700M N/R N/R 2 2 700M 1 800M 500M 10M 700M 700M 1 N/R 3 2 1 500M 1 2M 100M 1 | | ပ | υ<br> | U | × | | | | | | | | | | | 1.5 1.5 600M 600M 1 800M 600M 500M N/R | | മ | <br> <br> - | ပ | × | | | | | i | i | | | | | 2 1 1.5 C 500M N/R | 30 | U | | 1.5 | 1.5 | M009 | W009 | 1 | 800M | M009 | \$00M | N/R | 500M | W009 | | | | æ | | 7 | - | - | 1.5 | - | - | <del></del><br>ن | 500M | N/R | 20M | 1 | | 3 200M 1 C 10M 20M N/R N/R 2 2 700M 1 800M 500M 10N 70M 700M 1 1 100M | 31 | v | | c | 7 | 700M | _ | 20M | 20M | 700M | N/R | N/R | - | N/R | | N/R 2 2 700M 1 800M 500M 10N 70M 700M 1 N/R 3 2 1 500M 1 2M 100M 1 6 | | æ | | en . | 200M | 1 | o<br>O | | | MC1 | 20M | N/R | | U | | [ N/R 3 2 1 500M 1 2M 100M 1 6 | 32 | U | N/R | 2 | 2 | 700M | | 800W | 500M | 10M | 70M | 700M | ပ | × | | The second secon | | æ | N/R | 3 | 2 | | S00M | | 1 | 2M | 100M | - | S | × | TABLE 9 ALT SUMMARY - POLYURETHANE CONNECTORS | No. | Path | CYC 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |----------|------------|----------------------|-------------|---------------|--------|-------------|--------|--------|------|-------------------|--------|----------|----------| | | ပ | - MO05 | 800M | 675M | - M009 | - M009 | 500M | N/R | 800M | N/R | N/R | | | | | æ | <u>-</u> | _ | 7 | ပ | 500M | -<br>; | 7 | M009 | ပ | 7 | <u>-</u> | | | 7 | ပ | N/R | N/R | N/R | N/R | 100M | 70M | <br>U | 100M | 150M | 400M | 1 | | | | æ | _<br> <br>_ | N/R | ပ | 100M | 150M | - | 2 | 300M | - | - | 2 | | | ٣ | ပ | W009 | 700M | 500M | W009 | 300M | 10M | 400M | 400M | 700M | 0 | × | | | | æ | _<br> - | ₩008 | 2 | - | S00M | ; | - | M009 | 2 | _<br>ပ | × | | | 4 | ပ | H009 | 700M | 1750M | 4M | 300M | 50M | 700M | 400M | 30M | - | N/R | | | | æ | -<br>-<br>- | 700M | <br> | 50M | _ | - | | 700M | 500M | - | ; | | | 2 | ပ | 600M | 500M | 625M | 500M | 400M | 200M | ₩008 | 300M | _ | × | | | | | æ | | M006 | 1.5 | - | 700M | 5 | _<br>o | H009 | - | × | | | | 9 | ပ | 500M | 500M | 500M | - | 300M | 300M | 500M | 250M | <u>-</u> | M007 | 1 | <u> </u> | | | മ | -<br>-<br>- | 800M | - 3 | 50M | 500M | - | 5 | 300M | 7 | 2 | -<br>¦ | | | 7 | ပ | WO09 | 500M | 675M | 10M | 300M | 100M | 500M | 200M | 400M | 500M | 9 | | | | <b>£</b> Q | | M008 | 3 | ر<br>د | M004 | ر<br>د | _<br>_ | 100M | <del>-</del><br>۳ | - | - | | | <b>∞</b> | ပ | 150M | 300M | 300M | 100M | 150M | 100M | 100M | M06 | M09 | 150M | 200M | | | | æ | _<br> <br> - | 25M | _<br>ლ | _<br>ပ | <b>W009</b> | ; | 3 | 400M | 150M | -<br> | - | | | 6 | ပ | 300M | 500M | N/R | N/R | 200M | 400M | 2 | 300M | 100K | 2 | | | | | В | - | M007 | <u>۔</u><br>۳ | _<br>O | 500M | 100M | 2 | 300M | 150K | 1 | 300M | | | 10 | ပ | 500M | 700M | 600M | 700M | 300M | 200M | 10M | N/R | N/R | N/R | - | | | | M | <u>-</u><br><u>-</u> | ₩008 | 1.5 | - | 200M | 50M | 100M | 300M | ! | - | 1 | | | = | ပ | 700M | M006 | <u>۔</u> | - | 400M | 400M | 5M | 50M | 1 | N/R | 1.5 | | | | æ | | 850M | - 7 | 50M | 700M | 10M | 300M | 40M | 2M | 9 | - | | | 7 | ပ | 800M | 500M | | 15M | M009 | 700M | - | N/R | N/R | N/R | - | | | | 82 | _<br> -<br> - | 850M | 2 | -<br>- | 50M | -<br> | 300M | 300M | - | _<br> | - | | | .3 | ပ | | }<br>}<br>[ | | | | | | | | | | | | | æ | | | | | | | | | | | | | | 7 7 | ပ | | | | | | | | | | | | | | | æ | | | | | | | | | | | | | | 51 | υ | ₩9 | W009 | 2 | N/R | 30M | 20M | N/R | N/R | N/R | N/R | 50M | | | | æ | W09 | 700M | | N/R | 300M | - | 2 | 300M | ₩09 | 2 | - | | | 91 | O | -<br> <br> - | 850M | 2 | 200M | 25M | 100M | 30M | 400M | 30M | N/R | N/R | | | | æ | -<br>- | 800M | 3 | 4 | 400M | 70M | ၂ | 500M | N/R | N/R | 1 | | TABLE 10 ALT SUMMARY - POLYURETHANE CONNECTORS | No | Patn | CYC 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |-----|--------------|-------------|-------------|--------|------|--------|---------------|------|---------------|--------|---------------|----------------|------| | 17 | U | Z/R | N/R | 40% | N/R | N/R | 100M | N/R | 40M | 30M | 30M | 40M | | | | æ | 3 | | 3 | 500M | 5M | ; | 1.5 | 700M | 1 | 15M | 20M | | | 18 | U | 15M | 8W | 10M | Z.W | 2.M | 5.4 | 24 | N/R | N/R | N/R | 15% | | | | <b>p</b> C | - 5 | Ç) | 1 MOZ | 2M | 3Ж | ; | I.M | <u>۔</u><br>ن | ر<br>د | 100M | 150M | | | 19 | ပ | 300% | 500M | 300M | 300M | 300M | 300M | 300M | သ | W009 | W009 | M009 | | | | . <b>1</b> 0 | 100K | 800M | | 8 | 2M | 70M | 40M | 7 | 1 | <u>-</u><br>ن | J. | | | 2.0 | ပ | - 500M | 700M | 550M | N/R | N/R | 500M | N/R | N/R | N/R | N/R | N/R | | | | æ | æ | 500M | ~ | 1 | N/R | 70M | 20M | 50M | 100M | N/R | 10₩ | | | 21 | ပ | N/R | N/R | N/R | N/R | N/R | 10M | 50K | 50M | 8M | 20M | N/R | | | | 8 | | | 2 | 30M | 2M | | 600M | W009 | J.W | 10M | 30M | | | 22 | ပ | W009 | M009 | 725M | W009 | M06 | 50M | 800M | 500M | | | υ.<br>- | | | | 8 | c1 | 500M | 2 | 500M | 1.00K | <u>ح</u> | 2.M | 400K | Z.M | W09 | 3 <sub>M</sub> | | | 23 | ပ | N/R | N/R | N/R | N/R | 50M | 30M | \$0w | ₩09 | 2.0M | 30M | 40M | | | | В | - | | 3 | ΙM | N/R | | ပ | 5.M | х<br>х | U | 100K | | | 5.4 | U | | | | | | | | | | | | | | | ø, | | | | | | | | | | | | | | 2.5 | ပ | 100M | 250M | N/R | N/R | Z00M | 70M | 5M | 500M | N/R | N/R | 2 | | | | В | 2 | 300N | ~ | - | - | 1 | 7M | H009 | 10M | - | ₩09 | | | 56 | ပ | 400M | 250M | M009 | 1.5M | 100M | 0 | × | }<br> | | | | : | | | В | <br> | ΣX | 1 500M | 100M | 100M | <u>-</u><br>ن | × | ! | | : | | | | 27 | U | F005 | M009 | 1 500M | MO05 | C | 100K | 100M | W005 | 700% | 150K | 7007 | <br> | | | 83 | 10M | O | c4<br> | 80M | ر<br>ن | U | 70M | 15% | <br>U | 7 M | | | | 28 | U | - 1 | ₩006 | 7 | N/R | N/R | N/R | 80M | W009 | N/R | N/R | N/R | | | | В | - | 30M | 7 | N/R | 3.W | - | - W4 | К009 | — ' | ₩008 | — ; | 1 | | 59 | ပ | | | | | | | | | | | | | | | 8 | | | | | | | | | | ; | | ! | | 30 | ပ | N/R | N/R | N/K | N/R | N/R | N/R | 15M | 20M | 111 | 20M | N/R | | | | 8 | -<br>-<br>- | 20M | | N/R | 100K | - | W005 | 500M | _ ပ | 300M | 7.w | | | 31 | ပ | W009 | W009 | 550M | N/R | 100M | 20M | 20M | 1 5M | 1 SM | 20M | 1 5W | | | | æ | 150M | | 1.5 | - | ر<br>د | 20M | 15M | 800% | 300M | W009 | K009 | | | 32 | ပ | | | | | ! | ! | | ! | | | | ! | | | В | -! | i<br>i<br>i | 1 | | | : | | ; | : | 1 | : | | | | | | | | | | | | | | | | | TABLE 11 ALT SUMMARY - POLYURETHANE CONNECTORS | | | | | Re | sistance | Resistance Readings | çs. | | | | |-----|--------------|--------------|-------------|---------------|----------------|---------------------|--------|------------|--------|----------| | No. | Path | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | | | υ | N/R | N/R | 1 700M | 1.5 | W009 | —<br>ო | 400M | 100M | | | | <b>2</b> 21 | <del> </del> | <br> - | - | - | | - | ; | -<br>¦ | <b>∞</b> | | | ပ | <u> </u> | <br> <br> | _<br> <br> - | - | N/R | N/R | N/R | <br>ပ | × | | | æ | _<br>;<br>_ | | _<br> <br> - | - | <br> <br> - | _<br>ပ | <b>-</b> ∞ | -<br>o | × | | | U i | | | | | | | | | | | | <b>2</b> 0 1 | | | | | | | | | | | _ | ပ | N/R | N/R | - 20M | —.<br>₩09 | 50M | 30M | 40M | ပ | × | | | æ | 1 | 1 | - | ! | | | 200M | 20M | × | | | ပ | | | | | | | | | | | | <b>£</b> | _ | | | | | | | | _ | | | ပ | | 700M | M059 | 1.5 | M09 | 1 | N/R | 2 | 5 | | | æ | _<br> <br> - | <br> <br> - | _<br> <br> - | 1 | 20M | 1 | - | ! | W04 | | _ | ပ | _<br>;<br>_ | N/R | 10M | <u>၂</u> | × | | | | | | | æ | _<br>ი | -<br> | -<br>!<br>- | U | ×<br>_ | | | | _ | | | ပ | 200M | 100M | 100M | - | | N/R | N/R | 300M | × | | | æ | _<br> <br>_ | <u> </u> | _<br>¦<br>_ | ! | -<br> <br> | - | - | - | × | | | ပ | N/R | N/R | 15M | S <sub>M</sub> | | - 5M | 15M | - W8 | 15M | | | æ | -<br>; | - | <br> <br> - | SM<br>M | 1 | 50M | <u> </u> | - W | - | | _ | ပ | ; | N/R | <u> </u> | 1 | 7 | M009 | 250M | 1M | × | | | æ | ; | - | _<br> <br> - | ! | -<br>- | -<br>{ | 5 | v | × | | | ပ | 7 | _ | _<br>-<br>- | 7 | M006 | N/R | N/R | Z0M | 20M | | | <b>~</b> | _<br>;<br>_ | - | _<br>¦<br>_ | - | -<br> <br> | - | <u>-</u> | O | _ | | | υ | 1 | <u> </u> | N/R | N/R | N/R | N/R | N/R | 10M | 7M | | | <b>£</b> | ; | | _<br> -<br> - | | ပ | ပ | - | - | 10M | | | ပ | | | | | | | | | | | | æ | | | | | | : | | | _ | | _ | ပ | | | | | | | | | | | | 20 | | | | | | | | | | | | ပ | 5 | 300M | M004 | | N/R | N/R | N/R | 30M | 20M | | | æ | 15M | 1 | - | - | ! | - | | - | 15M | | _ | ပ | | N/R | 2.5 | 9 | ლ<br>ლ | N/R | Ψ. | 7 | W09 | | | 20 | C | | - | - | | N/R | 50M | - | 250M | TABLE 12 ALT SUMMARY - POLYURETHANE CONNECTORS | | | | | Resi | Resistance Readings | Readings | | | | | |-----|----------|----------|------|-----------|---------------------|-----------------|----------------|--------------|------|-----------------| | No. | Path | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | | 17 | U | 30M | 30M | 50M | 30M | 30M | 20M | 25M | 25M | × | | | æ | ر<br>د | 200M | - | - | <u>~</u> | 7.M | 300M | 1.5 | <u>~</u> | | 18 | υ | 20M | 15M | 15M | 15M | 5.M | ပ | × | | | | | æ | E E | 200M | - | 200M | 3× | _<br>ပ | × | | _ | | 19 | ပ | - | N/R | 400M | - | S0M | 25M | 150M | 100M | 300M | | | <b>8</b> | _ | 70M | 2 | 100K | - | 5 | 200M | 2 | _ | | 20 | ပ | N/R | N/R | 30M | ٣ | 2 | ပ | × | | | | | æ | 300M | 50M | | 300M | <u>۳</u> | C. | × | | | | 21 | U | N/R | N/R | SM | 3 | - | 500K | MOI | 40M | M009 | | | 20 | <u>၂</u> | ပ | 1.5 | 200M | 10M | 20M | W09 | 7 | 200M | | 22 | U | 1.5 | 200M | 100M | 70M | 10M | MO4 | 50M | W09 | 30M | | | B | 10M | Z0M | 80M | 100K | 500M | 500M | ر<br>د | 100M | 100K | | 23 | ပ | 50M | 7 | 30M | 50M | 30M | 15M | - | - | - | | | æ | <br>ن | 3 | 3M | 300M | ပ | 70M | - | 70M | ; | | 24 | ပ | | | | | | | | | | | | <b>~</b> | | | | | | | | | | | 25 | ပ | 30M | Z00M | 70M | 5 | 50M | 10M | 10M | Ж9 | 8.Y | | | œ | 70M | - | 1.5M | 2 | 80M | 30M | 2 | 50M | 334 | | 56 | U | | | | | | | | | | | | <b>m</b> | | | | | , | | | | | | 27 | ပ | 1 | 700M | 1 | N/R | N/R | N/R | N/R | 15M | 2.0 | | | m | 200M | 3M | <br>ပ | 9 | <u> </u> | 10M | - | 100M | 30 <del>M</del> | | 28 | U | N/R | N/R | 40M | S | 100K | U | N/R | × | _ | | | æ | 7 | - | - | 500M | 1M | 150M | <del>-</del> | × | _ | | 29 | U | | | | | | | | | | | | <b>~</b> | | | | | | | | | _ | | 30 | ر. | N/R | N/R | Σ. | 20M | 5M | 1.4 | SM. | 5M | ۸6 | | | æ | ∞4 | 300M | <br>! | 30M | ₩008 | 5 <sub>M</sub> | 30M | ₩8 | ₩7 | | 31 | C | - | 2 | <u>}₩</u> | 20M | 5. <del>X</del> | 1 5M | 10M | 20M | Ξ | | | pc. | F007 | 200M | 30M | M009 | 1 | 9 | - | 3 | 5M | | 32 | L | | | | | | | | | i | | | 22 | | | | | | | | | | ### APPENDIX C ### ESTIMATION OF ACCELERATION FACTORS We are assuming that the bond failures are controlled by water permeation through the elastomer to the bondline. One convenient measurement related to water permeation is the weight change of samples in water. Few data are available to date on the degradation rate of elastomers and bonds in water at various temperatures. References [1] and [2] were analyzed to estimate the acceleration factors used in this report. The references report on measurements of weight change of various elastomers in deionized water, artificial sea water and 3.5 percent saltwater at several temperatures. The specific polyurethane (PR-1547) and neoprene (Joy 319,735-8) used in manufacturing connectors in this program are not included among the materials reported. However, we are using the published data to generate the acceleration factors since they discuss the same generic materials and are likely to contain the same families of constituents. We do understand, however, that differences in the additives can substantially affect the aging characteristics of these elastomers. As shown in Table C-I, the acceleration factor between 25°C and 70°C may vary considerably depending upon the formulation and the amount of water absorbed. TABLE C-I Measured Acceleration Factors for Weight Gain at 70°-vs-25°C | Material | Water | Weight Gain % | Acc. Factor | |----------------------|-------|---------------|---------------| | (Baker and Thompson) | | | | | Polyurethane | DI | 1 | <b>x11.</b> 0 | | | | 2 | x10.0 | | | Sea | 1 | x11.3 | | | | 2 | x16.9 | | Neoprene W | DI | 1 | x16.8 | | | | 2 | x20.8 | | | Sea | 1 | x 9.2 | | | | 2 | x14.9 | | Neoprene 5112 | Sea | 1 | x31.5 | | | | 2 | x37.5 | | (Glowe and Thornton) | | | | | Neoprene (Straza | Salt | 1 | x 9.4 | | | | 2 | x15.2 | Since the purpose of the program was to compare polyurethane with neoprene assemblies it was felt important to have acceleration factors for the two materials that were comparable. Two phenomena in weight change experiments appear to be eligible references for comparing the performance of materials: the weight change at saturation, and the weight change at disintegration. The records in reference [2] showed no saturation or disintegration. In reference [1] the polyurethane saturated and disintegrated at the same weight increase in sea water while neoprene W saturated at 25°C at one weight increase and disintegrated at 80°C at a higher weight increase. While the data are confusing, the weight gain for neoprene saturation at 25°C was about the same as for polyurethane saturation at all temperatures, so the two materials are presumed to be subject to failure at about the same weight gain. The weight gain at failure measures about 2.5 percent, so the acceleration factors used in this program are estimated from the measured acceleration factors for sea water at 2 percent weight gain. Having only one such datum for polyurethane makes that choice simple, while the three such data for neoprene makes the selection of a value more difficult. In absence of any better methodology the three numbers were averaged. ### TABLE C-II Estimated Acceleration Factors for 70°-vs-25°C Exposures Polyurethane x 17 Neoprene x 23 ### REFERENCES - "The Effect of Seawater on Polymers", G. R. Baker and C. M. Thompson, Naval Research Laboratory Memorandum Report 4097, dated 14 Nov. 79. - 2. "Reliability Improvement Investigations of DT-308 Hydrophones and TR-125 Transducers, second Report: Preliminary Aging Results", D. E. Glowe and J. Scott Thornton, Texas Research Institute Report 7631-2, Dated 20 May 77. # END DATE FILMED DTIC